Diagnosing lagophthalmos using artificial intelligence

兔眼 医学 过度拟合 失明 人工智能 外科 计算机科学 人工神经网络 验光服务 眼睑
作者
Leonard Knoedler,Michael Alfertshofer,Sumanto Simon,Lukas Prantl,Andreas Kehrer,Cosima C. Hoch,Samuel Knoedler,Philipp Lamby
出处
期刊:Scientific Reports [Springer Nature]
卷期号:13 (1)
标识
DOI:10.1038/s41598-023-49006-3
摘要

Lagophthalmos is the incomplete closure of the eyelids posing the risk of corneal ulceration and blindness. Lagophthalmos is a common symptom of various pathologies. We aimed to program a convolutional neural network to automatize lagophthalmos diagnosis. From June 2019 to May 2021, prospective data acquisition was performed on 30 patients seen at the Department of Plastic, Hand, and Reconstructive Surgery at the University Hospital Regensburg, Germany (IRB reference number: 20-2081-101). In addition, comparative data were gathered from 10 healthy patients as the control group. The training set comprised 826 images, while the validation and testing sets consisted of 91 patient images each. Validation accuracy was 97.8% over the span of 64 epochs. The model was trained for 17.3 min. For training and validation, an average loss of 0.304 and 0.358 and a final loss of 0.276 and 0.157 were noted. The testing accuracy was observed to be 93.41% with a loss of 0.221. This study proposes a novel application for rapid and reliable lagophthalmos diagnosis. Our CNN-based approach combines effective anti-overfitting strategies, short training times, and high accuracy levels. Ultimately, this tool carries high translational potential to facilitate the physician's workflow and improve overall lagophthalmos patient care.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
楠楠2001完成签到 ,获得积分10
刚刚
ygr完成签到,获得积分0
刚刚
骨道发布了新的文献求助10
1秒前
1秒前
天真晓亦发布了新的文献求助10
2秒前
任性的乐天完成签到,获得积分10
2秒前
4秒前
6秒前
Maer完成签到 ,获得积分10
8秒前
张YI完成签到,获得积分10
8秒前
9秒前
10秒前
喵喵完成签到,获得积分20
11秒前
12秒前
12秒前
852应助叙温雨采纳,获得10
14秒前
喵喵发布了新的文献求助10
15秒前
领导范儿应助Bran采纳,获得10
19秒前
20秒前
Ava应助科研通管家采纳,获得10
22秒前
小蘑菇应助科研通管家采纳,获得10
22秒前
萧水白应助科研通管家采纳,获得10
22秒前
在水一方应助科研通管家采纳,获得10
22秒前
22秒前
脑洞疼应助科研通管家采纳,获得10
22秒前
Owen应助科研通管家采纳,获得30
22秒前
乐乐应助科研通管家采纳,获得10
22秒前
22秒前
天天快乐应助科研通管家采纳,获得10
22秒前
Akim应助科研通管家采纳,获得10
22秒前
脑洞疼应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
慕青应助科研通管家采纳,获得10
23秒前
丘比特应助科研通管家采纳,获得10
23秒前
星辰大海应助科研通管家采纳,获得10
23秒前
顾矜应助科研通管家采纳,获得10
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
23秒前
23秒前
25秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149266
求助须知:如何正确求助?哪些是违规求助? 2800354
关于积分的说明 7839707
捐赠科研通 2457979
什么是DOI,文献DOI怎么找? 1308158
科研通“疑难数据库(出版商)”最低求助积分说明 628456
版权声明 601706