纳米材料
抗菌剂
三乙氧基硅烷
核化学
硅酮
化学
铜
水溶液中的金属离子
单线态氧
抗菌活性
金属
纳米技术
材料科学
组合化学
细菌
有机化学
生物
氧气
遗传学
作者
Yayun Wu,Wanyue Fu,Lin Liu,Yechun Jiang,Nian Liu,Ming Fang,Haoming Ye,Jun Li,Zhaoyou Chu,Haisheng Qian,Min Shao
标识
DOI:10.1016/j.colsurfb.2023.113734
摘要
Metal-based nanomaterials have remarkable bactericidal effects; however, their toxicity cannot be disregarded. To address this concern, we developed a simple synthesis route for antibacterial catheters using metal-based nanomaterials to reduce toxicity while harnessing their excellent bactericidal properties. The grafting agent (3-aminopropyl)triethoxysilane (APTES) forms -NH2 groups on the catheter surface, onto which copper ions form a nanomaterial complex known as Cu2(OH)3(NO3) (defined as SA-Cu). The synthesized SA-Cu exhibited outstanding contact antibacterial effects, as observed through scanning electron microscopy (SEM), which revealed cell membrane crumbing and bacterial rupture on the catheter surface. Furthermore, SA-Cu exhibited excellent biosafety characteristics, as evidenced by the cell counting kit-8 (CCK-8) assay, which showed no significant cytotoxicity. SA-Cu demonstrated sustained antimicrobial capacity, with in vivo experiments demonstrating over 99% bactericidal efficacy against methicillin-resistant Staphylococcus aureus (MRSA) for two weeks. The transcriptome sequencing results suggested that SA-Cu may exert its bactericidal effects by interfering with histidine and purine metabolism in MRSA. This study presents a straightforward method for synthesizing antimicrobial silicone catheters containing copper nanomaterials using copper ions.
科研通智能强力驱动
Strongly Powered by AbleSci AI