化学空间
电极
电池(电)
材料科学
电压
贝叶斯优化
特征(语言学)
纳米技术
空格(标点符号)
计算机科学
领域(数学分析)
火车
电导率
人工智能
机器学习
电气工程
工程类
生物信息学
化学
数学
操作系统
语言学
地图学
地理
量子力学
药物发现
生物
功率(物理)
物理化学
哲学
数学分析
物理
作者
Mukhtar Lawan Adam,Oyawale Adetunji Moses,Jonathan P. Mailoa,Chang-Yu Hsieh,Xue‐Feng Yu,Hao Li,Haitao Zhao
标识
DOI:10.1016/j.ensm.2023.103090
摘要
Investigating the role of electrodes' physiochemical properties on their output voltage can be beneficial in developing high-performance batteries. To this end, this study uses a two-step machine learning (ML) approach to predict new electrodes and analyze the effects of their physiochemical properties on the voltage. The first step utilizes an ML model to curate an informative feature space that elucidates the relationship between physiochemical properties and voltage output. The second step trains an active learning model on the informative feature space using Bayesian optimization to screen potential battery electrodes from a dataset of 3656 materials. This strategy successfully identified 41 electrode materials that exhibit good electronic conductivity and host highly electronegative anions. This work provides an efficient strategy to discover novel electrode materials while integrating domain knowledge of chemistry and material science with ML in materials research.
科研通智能强力驱动
Strongly Powered by AbleSci AI