流动电池
材料科学
复合数
电池(电)
复合材料
陶瓷
多孔性
化学工程
膜
化学
物理
功率(物理)
生物化学
量子力学
工程类
作者
Kang Huang,Feiyan Mu,Xiaoxuan Hou,Hongyan Cao,Xin Liu,Ting Chen,Yu Xia,Zhi Xu
标识
DOI:10.1002/anie.202401558
摘要
Abstract In metal‐based flow battery, membranes significantly impact energy conversion efficiency and security. Unfortunately, damages to the membrane occur due to gradual accumulation of metal dendrites, causing short circuits and shortening cycle life. Herein, we developed a rigid hierarchical porous ceramic flow battery composite membrane with a sub‐10‐nm‐thick polyelectrolyte coating to achieve high ion selectivity and conductivity, to restrain dendrite, and to realize long cycle life and high areal capacity. An aqueous zinc‐iron flow battery prepared using this membrane achieved an outstanding energy efficiency of >80%, exhibiting excellent long‐term stability (over 1000 h) and extremely high areal capacity (260 mAh cm −2 ). Low‐field nuclear magnetic resonance (NMR) spectroscopy, small‐angle X‐ray scattering, in situ infrared spectroscopy, solid‐state NMR analysis, and nano‐computed tomography revealed that the rigid hierarchical pore structures and numerous hydrogen bonding networks in the membrane contributed to the stable operation and superior battery performance. This study contributes to the development of next‐generation metal‐based flow battery membranes for energy and power generation.
科研通智能强力驱动
Strongly Powered by AbleSci AI