Simple but effective: Liquid superlubricity with high load capacity achieved by ionic liquids

离子液体 材料科学 润滑 烷基 陶瓷 吸附 摩擦学 表面能 化学工程 复合材料 化学物理 化学 有机化学 工程类 催化作用
作者
Ke Wang,Lei Liu,Yuhong Liu,Jianbin Luo
出处
期刊:Materials Today Nano [Elsevier]
卷期号:20: 100257-100257 被引量:13
标识
DOI:10.1016/j.mtnano.2022.100257
摘要

Macroscale superlubricity is a new field that can greatly reduce energy consumption due to friction, which accounts for approximately 30% of human nonrenewable energy. However, prior research on liquid superlubricity mostly involved low contact pressures (<600 MPa). Here, we evaluated the lubrication and adsorption properties of ionic liquid alcohol solutions (ILs(as)) with different alkyl chain lengths and monovalent anions between Si3N4 and sapphire surfaces. Robust macroscale superlubricity and ultrahigh load capacity exceeding 1 GPa were obtained by protective adsorption layer caused by tribochemical reactions. Zeta potential measurements and simulation analysis revealed that the ceramic interfaces were enriched with numerous ionic liquid (IL) anions, preventing the direct collision of the asperities of the friction pairs. The relatively low sliding energy barrier and extremely strong electrostatic repulsion developed between these asperities enhanced the superlubricity and ultrahigh load capacity. Meanwhile, long alkyl chains and tetrafluoroborate anions more easily met the hydrodynamic boundary conditions at the solid–liquid interface, and the formation of low energy consumption channels through the smooth potential energy fluctuation surface generated extremely low shear stress. Such macroscale lubrication provides a novel method of achieving extremely high contact pressure in ILs(as), which could enable liquid superlubricity in practical industrial applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lock发布了新的文献求助10
1秒前
1秒前
彭于晏应助三石采纳,获得10
2秒前
大个应助如意的秋白采纳,获得10
2秒前
小喻发布了新的文献求助10
3秒前
黄油包发布了新的文献求助10
4秒前
酷波er应助刘璇1采纳,获得10
5秒前
noah发布了新的文献求助10
5秒前
等待的鞯完成签到,获得积分20
5秒前
6秒前
6秒前
Singularity举报hsj求助涉嫌违规
9秒前
幸运的科研小狗完成签到,获得积分10
9秒前
小付发布了新的文献求助10
10秒前
10秒前
10秒前
12秒前
12秒前
NexusExplorer应助Karol采纳,获得10
13秒前
Rina发布了新的文献求助10
13秒前
任伟超发布了新的文献求助30
14秒前
fighting发布了新的文献求助10
14秒前
阳光怀亦发布了新的文献求助30
14秒前
14秒前
14秒前
耶椰耶完成签到 ,获得积分10
16秒前
16秒前
17秒前
18秒前
18秒前
18秒前
调研昵称发布了新的文献求助10
19秒前
wanci应助yingjin采纳,获得10
20秒前
小丑鱼儿完成签到 ,获得积分10
20秒前
20秒前
罗健完成签到,获得积分10
20秒前
noah完成签到,获得积分10
20秒前
天天快乐应助Rina采纳,获得10
21秒前
22秒前
taozhiqi发布了新的文献求助10
23秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459295
求助须知:如何正确求助?哪些是违规求助? 3053785
关于积分的说明 9038498
捐赠科研通 2743130
什么是DOI,文献DOI怎么找? 1504671
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694664