已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MetaCAR: Cross-Domain Meta-Augmentation for Content-Aware Recommendation

符号 计算机科学 一般化 过度拟合 表(数据库) 人工智能 目录 情报检索 算法 数学 万维网 算术 数据库 人工神经网络 数学分析
作者
Hui Xu,Changyu Li,Yan Zhang,Lixin Duan,Ivor W. Tsang,Jie Shao
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:: 1-14 被引量:8
标识
DOI:10.1109/tkde.2022.3209005
摘要

Cold-start has become critical for recommendations, especially for sparse user-item interactions. Recent approaches based on meta-learning succeed in alleviating the issue, owing to the fact that these methods have strong generalization, so they can fast adapt to new tasks under cold-start settings. However, these meta-learning-based recommendation models learned with single and spase ratings are easily falling into the meta-overfitting, since the one and only rating $r_{ui}$ to a specific item $i$ cannot reflect a user's diverse interests under various circumstances(e.g., time, mood, age, etc), i.e. if $r_{ui}$ equals to 1 in the historical dataset, but $r_{ui}$ could be 0 in some circumstance. In meta-learning, tasks with these single ratings are called Non-Mutually-Exclusive(Non-ME) tasks, and tasks with diverse ratings are called Mutually-Exclusive(ME) tasks. Fortunately, a meta-augmentation technique is proposed to relief the meta-overfitting for meta-learning methods by transferring Non-ME tasks into ME tasks by adding noises to labels without changing inputs. Motivated by the meta-augmentation method, in this paper, we propose a cross-domain meta-augmentation technique for content-aware recommendation systems (MetaCAR) to construct ME tasks in the recommendation scenario. Our proposed method consists of two stages: meta-augmentation and meta-learning. In the meta-augmentation stage, we first conduct domain adaptation by a dual conditional variational autoencoder (CVAE) with a multi-view information bottleneck constraint, and then apply the learned CVAE to generate ratings for users in the target domain. In the meta-learning stage, we introduce both the true and generated ratings to construct ME tasks that enables the meta-learning recommendations to avoid meta-overfitting. Experiments evaluated in real-world datasets show the significant superiority of MetaCAR for coping with the cold-start user issue over competing baselines including cross-domain, content-aware, and meta-learning-based recommendations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坛子发布了新的文献求助10
1秒前
传奇3应助Niko采纳,获得20
3秒前
3秒前
4秒前
Doctor_jie完成签到 ,获得积分10
4秒前
idiom完成签到 ,获得积分10
6秒前
7秒前
小罗发布了新的文献求助10
9秒前
Hi完成签到 ,获得积分10
10秒前
元宝团子完成签到,获得积分10
11秒前
Vigour完成签到 ,获得积分10
12秒前
12秒前
14秒前
量子星尘发布了新的文献求助10
16秒前
jianghu发布了新的文献求助10
17秒前
小罗完成签到,获得积分20
19秒前
uikymh完成签到 ,获得积分0
21秒前
oleskarabach发布了新的文献求助10
21秒前
雷雷完成签到,获得积分10
24秒前
Victor完成签到 ,获得积分10
24秒前
777完成签到 ,获得积分10
25秒前
snah完成签到 ,获得积分10
25秒前
杰帅完成签到,获得积分10
26秒前
chujun_cai完成签到 ,获得积分10
27秒前
WK完成签到,获得积分10
27秒前
我是老大应助椒盐柠檬茶采纳,获得10
29秒前
江南之南完成签到 ,获得积分10
29秒前
冷漠的馄饨完成签到 ,获得积分10
30秒前
hygge完成签到,获得积分20
31秒前
量子星尘发布了新的文献求助150
31秒前
jianghu完成签到,获得积分20
35秒前
和ml完成签到 ,获得积分10
37秒前
chana完成签到,获得积分10
38秒前
weining完成签到,获得积分10
38秒前
Liao完成签到,获得积分10
39秒前
安静的棉花糖完成签到 ,获得积分10
42秒前
hiaoyi完成签到 ,获得积分0
43秒前
顺心的安珊完成签到 ,获得积分10
43秒前
乐乐完成签到 ,获得积分10
44秒前
Jenkin完成签到,获得积分10
46秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666277
求助须知:如何正确求助?哪些是违规求助? 3225351
关于积分的说明 9762566
捐赠科研通 2935243
什么是DOI,文献DOI怎么找? 1607513
邀请新用户注册赠送积分活动 759242
科研通“疑难数据库(出版商)”最低求助积分说明 735185