Iron carbide nanoparticles supported on an N-doped carbon porous framework as a bifunctional material for electrocatalytic oxygen reduction and supercapacitors

超级电容器 双功能 材料科学 电化学 电解质 纳米颗粒 纳米材料 化学工程 纳米技术 催化作用 碳纤维 电极 复合数 化学 复合材料 有机化学 物理化学 工程类
作者
Zengyu Han,Wenfang Cai,Zhao Shi-feng,Yi Zhao,Ji‐Rui Bai,Qing‐Yun Chen,Yun‐Hai Wang
出处
期刊:Nanoscale [The Royal Society of Chemistry]
卷期号:14 (48): 18157-18166 被引量:7
标识
DOI:10.1039/d2nr05620h
摘要

Highly active and durable bifunctional materials are of pivotal importance for energy conversion and storage devices, yet a comprehensive understanding of their geometric and electronic influence on electrochemical activity is urgently needed. Fe-N-C materials with physical and chemical structural merits are considered as one of the promising candidates for efficient oxygen reduction reaction electrocatalysts and supercapacitor electrodes. Herein, Fe3C nanoparticles supported on a porous N-doped carbon framework (denoted as Fe3C/PNCF) were readily prepared by one-step chemical vapor deposition under the assistance of a NaCl salt template. The experiment results revealed that the as-synthesized Fe3C/PNCF nanocomposites successfully displayed attractive electrocatalytic oxygen reduction reaction (ORR) activity comparable to that of the Pt/C catalyst (E1/2 of 0.84 V and 0.83 V, respectively), and a superior capacitance of 385.3 F g-1 under 1 A g-1 for a supercapacitor. It's proposed that the increased pyridinic and graphitic N coordination on the hydrophilic porous framework provides more electrochemical active surface area for the storage and transport of electrolyte ions. Additionally, an appropriate d-band center created by the optimized adsorption function endows Fe3C/PNCF with excellent electrochemical properties. The results confirmed that the integration strategy of porous heterogeneous structure and accessible active sites balanced the complex relationship between geometry, electronic structure, and electrochemical activity. Our research provides a facile approach for fabricating multi-functional nanomaterials applicable in both ORR and supercapacitors in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
dyx完成签到,获得积分10
刚刚
尊敬的小土豆完成签到,获得积分10
刚刚
杨e发布了新的文献求助10
刚刚
能干的巧曼关注了科研通微信公众号
1秒前
yar应助标致的小张同学采纳,获得10
1秒前
2秒前
ylp0813完成签到,获得积分10
2秒前
lambda发布了新的文献求助80
3秒前
愉快又莲发布了新的文献求助10
4秒前
zoe666应助lfl采纳,获得10
5秒前
6秒前
慕青应助Komorebi采纳,获得10
7秒前
郭郭郭发布了新的文献求助10
7秒前
7秒前
丫逊完成签到,获得积分10
7秒前
taoeric发布了新的文献求助200
7秒前
Jun驳回了Meng应助
8秒前
8秒前
05完成签到 ,获得积分10
9秒前
Ava应助昵称采纳,获得10
9秒前
9秒前
9秒前
lty发布了新的文献求助10
11秒前
yuti完成签到,获得积分10
11秒前
xiao白完成签到,获得积分10
11秒前
椰椰耶耶发布了新的文献求助10
12秒前
12秒前
12秒前
彭于彦祖应助kankanli采纳,获得30
12秒前
13秒前
愉快又莲完成签到,获得积分10
13秒前
酷酷念瑶发布了新的文献求助10
13秒前
整化学发布了新的文献求助10
13秒前
14秒前
14秒前
14秒前
仇文琪完成签到,获得积分10
15秒前
科研白完成签到,获得积分10
16秒前
细心不二发布了新的文献求助10
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
錢鍾書楊絳親友書札 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3296982
求助须知:如何正确求助?哪些是违规求助? 2932577
关于积分的说明 8457843
捐赠科研通 2605253
什么是DOI,文献DOI怎么找? 1422179
科研通“疑难数据库(出版商)”最低求助积分说明 661332
邀请新用户注册赠送积分活动 644534