A New Empirical Correlation for Pore Pressure Prediction Based on Artificial Neural Networks Applied to a Real Case Study

人工神经网络 孔隙水压力 反向传播 相关系数 理论(学习稳定性) 相关性 计算机科学 人工智能 数学 机器学习 工程类 岩土工程 几何学
作者
Ahmed Abdulhamid Mahmoud,Bassam Mohsen Alzayer,George Panagopoulos,Paschalia Kiomourtzi,Panagiotis Kirmizakis,Salaheldin Elkatatny,Pantelis Soupios
出处
期刊:Processes [MDPI AG]
卷期号:12 (4): 664-664 被引量:3
标识
DOI:10.3390/pr12040664
摘要

Pore pressure prediction is a critical parameter in petroleum engineering and is essential for safe drilling operations and wellbore stability. However, traditional methods for pore pressure prediction, such as empirical correlations, require selecting appropriate input parameters and may not capture the complex relationships between these parameters and the pore pressure. In contrast, artificial neural networks (ANNs) can learn complex relationships between inputs and outputs from data. This paper presents a new empirical correlation for predicting pore pressure using ANNs. The proposed method uses 42 datasets of well log data, including temperature, porosity, and water saturation, to train ANNs for pore pressure prediction. The trained model, with the Bayesian regularization backpropagation function, predicts the pore pressure with an average absolute percentage error (AAPE) and correlation coefficient (R) of 4.22% and 0.875, respectively. The trained ANN is then used to develop a new empirical correlation that relates pore pressure to the input parameters considering the weights and biases of the optimized ANN model. To validate the proposed correlation, it is applied to a blind dataset, where the model successfully predicts the pore pressure with an AAPE of 5.44% and R of 0.957. The results show that the proposed correlation provides accurate and reliable predictions of pore pressure. The proposed method provides a robust and accurate approach for predicting pore pressure in petroleum engineering applications, which can be used to improve drilling safety and wellbore stability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
上官若男应助义气的乐曲采纳,获得10
刚刚
柔弱亦寒发布了新的文献求助10
1秒前
DrLi完成签到,获得积分10
1秒前
Rmmakk完成签到,获得积分10
1秒前
科研通AI6应助kids采纳,获得10
1秒前
小蘑菇应助感动绮晴采纳,获得30
1秒前
慕容冰璃完成签到,获得积分10
2秒前
冷艳的半凡完成签到,获得积分10
2秒前
pluto完成签到,获得积分10
2秒前
呆萌千柳关注了科研通微信公众号
2秒前
小马甲应助四菇娘采纳,获得10
2秒前
2秒前
hongping发布了新的文献求助10
2秒前
共享精神应助675采纳,获得10
2秒前
123发布了新的文献求助10
2秒前
3秒前
Akim应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
赘婿应助wang采纳,获得10
3秒前
蓝柚应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
Orange应助MYLCX采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
打打应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
搞怪天真发布了新的文献求助10
4秒前
4秒前
小周发布了新的文献求助10
5秒前
斯文败类应助淡然寒蕾采纳,获得10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5576645
求助须知:如何正确求助?哪些是违规求助? 4662026
关于积分的说明 14739107
捐赠科研通 4602583
什么是DOI,文献DOI怎么找? 2525877
邀请新用户注册赠送积分活动 1495813
关于科研通互助平台的介绍 1465448