A New Empirical Correlation for Pore Pressure Prediction Based on Artificial Neural Networks Applied to a Real Case Study

人工神经网络 孔隙水压力 反向传播 相关系数 理论(学习稳定性) 相关性 计算机科学 人工智能 数学 机器学习 工程类 岩土工程 几何学
作者
Ahmed Abdulhamid Mahmoud,Bassam Mohsen Alzayer,George Panagopoulos,Paschalia Kiomourtzi,Panagiotis Kirmizakis,Salaheldin Elkatatny,Pantelis Soupios
出处
期刊:Processes [Multidisciplinary Digital Publishing Institute]
卷期号:12 (4): 664-664 被引量:3
标识
DOI:10.3390/pr12040664
摘要

Pore pressure prediction is a critical parameter in petroleum engineering and is essential for safe drilling operations and wellbore stability. However, traditional methods for pore pressure prediction, such as empirical correlations, require selecting appropriate input parameters and may not capture the complex relationships between these parameters and the pore pressure. In contrast, artificial neural networks (ANNs) can learn complex relationships between inputs and outputs from data. This paper presents a new empirical correlation for predicting pore pressure using ANNs. The proposed method uses 42 datasets of well log data, including temperature, porosity, and water saturation, to train ANNs for pore pressure prediction. The trained model, with the Bayesian regularization backpropagation function, predicts the pore pressure with an average absolute percentage error (AAPE) and correlation coefficient (R) of 4.22% and 0.875, respectively. The trained ANN is then used to develop a new empirical correlation that relates pore pressure to the input parameters considering the weights and biases of the optimized ANN model. To validate the proposed correlation, it is applied to a blind dataset, where the model successfully predicts the pore pressure with an AAPE of 5.44% and R of 0.957. The results show that the proposed correlation provides accurate and reliable predictions of pore pressure. The proposed method provides a robust and accurate approach for predicting pore pressure in petroleum engineering applications, which can be used to improve drilling safety and wellbore stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
悲伤西米露应助飘飘素晴采纳,获得10
1秒前
小张吃不胖完成签到 ,获得积分10
2秒前
2秒前
2秒前
2秒前
Ava应助鱼鱼采纳,获得30
3秒前
3秒前
4秒前
情怀应助醉熏的红酒采纳,获得10
4秒前
悠旷完成签到 ,获得积分10
4秒前
夜凉如水完成签到,获得积分10
4秒前
又又发布了新的文献求助10
5秒前
虚心的芹发布了新的文献求助10
5秒前
学术小菜鸡完成签到,获得积分20
6秒前
6秒前
7秒前
G7sunny发布了新的文献求助10
7秒前
7秒前
ww发布了新的文献求助10
7秒前
8秒前
8秒前
赵帅勇完成签到,获得积分10
8秒前
8秒前
8秒前
完美世界应助含糊的画板采纳,获得10
8秒前
loveananya完成签到,获得积分20
9秒前
9秒前
lisizheng完成签到,获得积分10
9秒前
金铭完成签到,获得积分10
10秒前
WTaMi发布了新的文献求助10
10秒前
xxywmt发布了新的文献求助10
12秒前
tree发布了新的文献求助10
12秒前
Mike完成签到,获得积分10
12秒前
12秒前
12秒前
金铭发布了新的文献求助30
13秒前
13秒前
dreamrain完成签到 ,获得积分10
14秒前
lisizheng发布了新的文献求助10
14秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960857
求助须知:如何正确求助?哪些是违规求助? 3507137
关于积分的说明 11133875
捐赠科研通 3239467
什么是DOI,文献DOI怎么找? 1790120
邀请新用户注册赠送积分活动 872177
科研通“疑难数据库(出版商)”最低求助积分说明 803149