A New Empirical Correlation for Pore Pressure Prediction Based on Artificial Neural Networks Applied to a Real Case Study

人工神经网络 孔隙水压力 反向传播 相关系数 理论(学习稳定性) 相关性 计算机科学 人工智能 数学 机器学习 工程类 岩土工程 几何学
作者
Ahmed Abdulhamid Mahmoud,Bassam Mohsen Alzayer,George Panagopoulos,Paschalia Kiomourtzi,Panagiotis Kirmizakis,Salaheldin Elkatatny,Pantelis Soupios
出处
期刊:Processes [Multidisciplinary Digital Publishing Institute]
卷期号:12 (4): 664-664 被引量:3
标识
DOI:10.3390/pr12040664
摘要

Pore pressure prediction is a critical parameter in petroleum engineering and is essential for safe drilling operations and wellbore stability. However, traditional methods for pore pressure prediction, such as empirical correlations, require selecting appropriate input parameters and may not capture the complex relationships between these parameters and the pore pressure. In contrast, artificial neural networks (ANNs) can learn complex relationships between inputs and outputs from data. This paper presents a new empirical correlation for predicting pore pressure using ANNs. The proposed method uses 42 datasets of well log data, including temperature, porosity, and water saturation, to train ANNs for pore pressure prediction. The trained model, with the Bayesian regularization backpropagation function, predicts the pore pressure with an average absolute percentage error (AAPE) and correlation coefficient (R) of 4.22% and 0.875, respectively. The trained ANN is then used to develop a new empirical correlation that relates pore pressure to the input parameters considering the weights and biases of the optimized ANN model. To validate the proposed correlation, it is applied to a blind dataset, where the model successfully predicts the pore pressure with an AAPE of 5.44% and R of 0.957. The results show that the proposed correlation provides accurate and reliable predictions of pore pressure. The proposed method provides a robust and accurate approach for predicting pore pressure in petroleum engineering applications, which can be used to improve drilling safety and wellbore stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
思芋奶糕完成签到,获得积分10
1秒前
2秒前
3秒前
思芋奶糕发布了新的文献求助10
3秒前
cdhuang发布了新的文献求助10
3秒前
ooa4321发布了新的文献求助10
6秒前
落落完成签到,获得积分10
8秒前
8秒前
Tzzl0226发布了新的文献求助10
9秒前
10秒前
竹筏过海应助Autin采纳,获得100
11秒前
dalong完成签到,获得积分10
13秒前
wanci应助王红玉采纳,获得10
13秒前
Owen应助楼下太吵了采纳,获得10
15秒前
15秒前
XIA发布了新的文献求助10
15秒前
16秒前
16秒前
玩的时候认真玩应助iros采纳,获得20
17秒前
兴奋冷松完成签到,获得积分10
17秒前
runrun完成签到,获得积分10
17秒前
yijian完成签到,获得积分10
18秒前
19秒前
怪胎完成签到,获得积分10
19秒前
任性凤凰发布了新的文献求助10
20秒前
rive发布了新的文献求助10
21秒前
赘婿应助一只猪采纳,获得10
21秒前
21秒前
旱田蜗牛发布了新的文献求助10
21秒前
哈哈发布了新的文献求助10
23秒前
王俊涵发布了新的文献求助30
24秒前
Tzzl0226发布了新的文献求助10
24秒前
25秒前
zhanghl发布了新的文献求助10
25秒前
cdhuang完成签到,获得积分10
26秒前
26秒前
27秒前
carl完成签到 ,获得积分10
27秒前
阿涂发布了新的文献求助10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4923236
求助须知:如何正确求助?哪些是违规求助? 4193683
关于积分的说明 13025807
捐赠科研通 3965586
什么是DOI,文献DOI怎么找? 2173403
邀请新用户注册赠送积分活动 1190992
关于科研通互助平台的介绍 1100532