环境科学
生态系统
土壤水分
全球变暖
气候变化
湿地
极端气候
土壤碳
气候学
生态学
土壤科学
地质学
生物
作者
Xingwang Fan,Yunlin Zhang,Kun� Shi,Jian Peng,Yongwei Liu,Yongqiang Zhou,Yuanbo Liu,Qing Zhu,Chunqiao Song,Rongrong Wan,Xiaosong Zhao,R. Iestyn Woolway
标识
DOI:10.1073/pnas.2410294121
摘要
Compound drought–heatwaves (CDHWs) accelerate the warming and drying of soils, triggering soil compound drought–heatwaves (SCDHWs) that jeopardize the health of soil ecosystems. Nevertheless, the behavior of these events worldwide and their responses to climatic warming are underexplored. Here, we show a global escalation in the frequency, duration, peak intensity, and severity of SCDHWs, as well as an increase in affected land area, from 1980 to 2023. The increasing trends, which are particularly prominent since the early 2000 s, and projected to persist throughout this century, are dominated by summertime SCDHWs and enhanced by El Niño. Intensive soil warming as well as climatologically lower soil temperatures compared to air temperatures lead to localized hotspots of escalating SCDHW severity in northern high latitudes, while prolonged duration causes such hotspots in northern South America. Transformation of natural ecosystems, particularly forests and wetlands, to cropland as well as forest degradation substantially enhance the strength of SCDHWs. Global SCDHWs consistently exhibit higher frequencies, longer durations, greater severities, and faster growth rates than CDHWs in all aspects from 1980 to 2023. They are undergoing a critical transition, with droughts replacing heatwaves as the primary constraint. We emphasize the significant intensification of SCDHWs in northern high latitudes as well as the prolonged duration of SCDHWs in the Southern Hemisphere, posing an underrated threat to achieving carbon neutrality and food security goals.
科研通智能强力驱动
Strongly Powered by AbleSci AI