Combination treatment optimization using a pan-cancer pathway model

计算机科学 可扩展性 癌症治疗 癌症 计算生物学 数学优化 数学 医学 生物 数据库 内科学
作者
Robin Schmucker,Gabriele Farina,James R. Faeder,Fabian Fröhlich,Ali Sinan Saglam,Tüomas Sandholm
出处
期刊:PLOS Computational Biology [Public Library of Science]
卷期号:17 (12): e1009689-e1009689 被引量:10
标识
DOI:10.1371/journal.pcbi.1009689
摘要

The design of efficient combination therapies is a difficult key challenge in the treatment of complex diseases such as cancers. The large heterogeneity of cancers and the large number of available drugs renders exhaustive in vivo or even in vitro investigation of possible treatments impractical. In recent years, sophisticated mechanistic, ordinary differential equation-based pathways models that can predict treatment responses at a molecular level have been developed. However, surprisingly little effort has been put into leveraging these models to find novel therapies. In this paper we use for the first time, to our knowledge, a large-scale state-of-the-art pan-cancer signaling pathway model to identify candidates for novel combination therapies to treat individual cancer cell lines from various tissues (e.g., minimizing proliferation while keeping dosage low to avoid adverse side effects) and populations of heterogeneous cancer cell lines (e.g., minimizing the maximum or average proliferation across the cell lines while keeping dosage low). We also show how our method can be used to optimize the drug combinations used in sequential treatment plans-that is, optimized sequences of potentially different drug combinations-providing additional benefits. In order to solve the treatment optimization problems, we combine the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) algorithm with a significantly more scalable sampling scheme for truncated Gaussian distributions, based on a Hamiltonian Monte-Carlo method. These optimization techniques are independent of the signaling pathway model, and can thus be adapted to find treatment candidates for other complex diseases than cancers as well, as long as a suitable predictive model is available.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
jianhaohuang发布了新的文献求助200
1秒前
1秒前
深深发布了新的文献求助10
2秒前
英俊的铭应助wu采纳,获得10
2秒前
zzzkyt发布了新的文献求助10
2秒前
Jasper应助清脆靳采纳,获得10
3秒前
小n发布了新的文献求助10
3秒前
hanyang965发布了新的文献求助10
5秒前
6秒前
7秒前
Graham发布了新的文献求助10
8秒前
从容前行完成签到,获得积分10
8秒前
阿巴阿巴发布了新的文献求助10
10秒前
私心無名完成签到,获得积分10
10秒前
11秒前
小鲨鱼完成签到,获得积分10
11秒前
秀丽的砖家完成签到,获得积分10
12秒前
Akim应助深深采纳,获得10
13秒前
森气发布了新的文献求助10
13秒前
传奇3应助hanyang965采纳,获得10
14秒前
14秒前
我是老大应助Augusterny采纳,获得30
15秒前
16秒前
18秒前
MINGHUI发布了新的文献求助10
18秒前
18秒前
Zhuzhu发布了新的文献求助200
18秒前
CodeCraft应助海狗采纳,获得10
18秒前
桦晔完成签到,获得积分20
19秒前
20秒前
贪玩果汁发布了新的文献求助10
21秒前
清脆靳发布了新的文献求助10
22秒前
Graham完成签到,获得积分10
23秒前
栀子完成签到 ,获得积分10
26秒前
26秒前
26秒前
xiaoluuu完成签到 ,获得积分10
27秒前
健忘的荔枝完成签到 ,获得积分10
28秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310354
求助须知:如何正确求助?哪些是违规求助? 2943290
关于积分的说明 8513642
捐赠科研通 2618527
什么是DOI,文献DOI怎么找? 1431125
科研通“疑难数据库(出版商)”最低求助积分说明 664383
邀请新用户注册赠送积分活动 649580