Identification of Non–Small Cell Lung Cancer Sensitive to Systemic Cancer Therapies Using Radiomics

医学 肺癌 无线电技术 肿瘤科 内科学 鉴定(生物学) 全身疗法 癌症 放射科 病理 生物 乳腺癌 植物
作者
Laurent Dercle,Matthew Fronheiser,Lin Lü,Shuyan Du,Wendy Hayes,David Leung,Amit Roy,Julia Wilkerson,Pingzhen Guo,Antonio Tito Fojo,Lawrence H. Schwartz,Binsheng Zhao
出处
期刊:Clinical Cancer Research [American Association for Cancer Research]
卷期号:26 (9): 2151-2162 被引量:169
标识
DOI:10.1158/1078-0432.ccr-19-2942
摘要

Abstract Purpose: Using standard-of-care CT images obtained from patients with a diagnosis of non–small cell lung cancer (NSCLC), we defined radiomics signatures predicting the sensitivity of tumors to nivolumab, docetaxel, and gefitinib. Experimental Design: Data were collected prospectively and analyzed retrospectively across multicenter clinical trials [nivolumab, n = 92, CheckMate017 (NCT01642004), CheckMate063 (NCT01721759); docetaxel, n = 50, CheckMate017; gefitinib, n = 46, (NCT00588445)]. Patients were randomized to training or validation cohorts using either a 4:1 ratio (nivolumab: 72T:20V) or a 2:1 ratio (docetaxel: 32T:18V; gefitinib: 31T:15V) to ensure an adequate sample size in the validation set. Radiomics signatures were derived from quantitative analysis of early tumor changes from baseline to first on-treatment assessment. For each patient, 1,160 radiomics features were extracted from the largest measurable lung lesion. Tumors were classified as treatment sensitive or insensitive; reference standard was median progression-free survival (NCT01642004, NCT01721759) or surgery (NCT00588445). Machine learning was implemented to select up to four features to develop a radiomics signature in the training datasets and applied to each patient in the validation datasets to classify treatment sensitivity. Results: The radiomics signatures predicted treatment sensitivity in the validation dataset of each study group with AUC (95 confidence interval): nivolumab, 0.77 (0.55–1.00); docetaxel, 0.67 (0.37–0.96); and gefitinib, 0.82 (0.53–0.97). Using serial radiographic measurements, the magnitude of exponential increase in signature features deciphering tumor volume, invasion of tumor boundaries, or tumor spatial heterogeneity was associated with shorter overall survival. Conclusions: Radiomics signatures predicted tumor sensitivity to treatment in patients with NSCLC, offering an approach that could enhance clinical decision-making to continue systemic therapies and forecast overall survival.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
爆米花应助tracer526采纳,获得10
2秒前
独特广山发布了新的文献求助10
3秒前
4秒前
曾经沛白完成签到 ,获得积分10
6秒前
Jasper应助善良的广缘采纳,获得10
6秒前
Yan完成签到,获得积分10
7秒前
7秒前
muzian完成签到 ,获得积分10
8秒前
chenzhi发布了新的文献求助10
9秒前
爱听歌老1完成签到,获得积分10
11秒前
wzppp发布了新的文献求助10
11秒前
12秒前
大个应助zhu采纳,获得10
15秒前
regina完成签到 ,获得积分10
16秒前
17秒前
ll完成签到,获得积分20
19秒前
香蕉诗蕊举报不知道叫啥求助涉嫌违规
20秒前
21秒前
隐形曼青应助我不爱池鱼采纳,获得20
21秒前
小马甲应助chenzhi采纳,获得10
29秒前
35秒前
勤恳的念真完成签到,获得积分10
37秒前
儒雅的山河完成签到 ,获得积分10
38秒前
李健的小迷弟应助逸风望采纳,获得10
38秒前
39秒前
tracer526发布了新的文献求助10
40秒前
徐悦月发布了新的文献求助10
42秒前
43秒前
ccrr完成签到 ,获得积分10
43秒前
韩常利发布了新的文献求助10
45秒前
46秒前
47秒前
领导范儿应助t忒对采纳,获得10
48秒前
科研通AI6应助dvdb采纳,获得10
49秒前
科研通AI6应助dvdb采纳,获得10
49秒前
逸风望发布了新的文献求助10
52秒前
Lny发布了新的文献求助10
52秒前
666完成签到 ,获得积分10
52秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560419
求助须知:如何正确求助?哪些是违规求助? 4645567
关于积分的说明 14675591
捐赠科研通 4586746
什么是DOI,文献DOI怎么找? 2516526
邀请新用户注册赠送积分活动 1490130
关于科研通互助平台的介绍 1460963