Identification of Non–Small Cell Lung Cancer Sensitive to Systemic Cancer Therapies Using Radiomics

医学 肺癌 无线电技术 肿瘤科 内科学 鉴定(生物学) 全身疗法 癌症 放射科 病理 生物 乳腺癌 植物
作者
Laurent Dercle,Matthew Fronheiser,Lin Lü,Shuyan Du,Wendy Hayes,David Leung,Amit Roy,Julia Wilkerson,Pingzhen Guo,Antonio Tito Fojo,Lawrence H. Schwartz,Binsheng Zhao
出处
期刊:Clinical Cancer Research [American Association for Cancer Research]
卷期号:26 (9): 2151-2162 被引量:169
标识
DOI:10.1158/1078-0432.ccr-19-2942
摘要

Abstract Purpose: Using standard-of-care CT images obtained from patients with a diagnosis of non–small cell lung cancer (NSCLC), we defined radiomics signatures predicting the sensitivity of tumors to nivolumab, docetaxel, and gefitinib. Experimental Design: Data were collected prospectively and analyzed retrospectively across multicenter clinical trials [nivolumab, n = 92, CheckMate017 (NCT01642004), CheckMate063 (NCT01721759); docetaxel, n = 50, CheckMate017; gefitinib, n = 46, (NCT00588445)]. Patients were randomized to training or validation cohorts using either a 4:1 ratio (nivolumab: 72T:20V) or a 2:1 ratio (docetaxel: 32T:18V; gefitinib: 31T:15V) to ensure an adequate sample size in the validation set. Radiomics signatures were derived from quantitative analysis of early tumor changes from baseline to first on-treatment assessment. For each patient, 1,160 radiomics features were extracted from the largest measurable lung lesion. Tumors were classified as treatment sensitive or insensitive; reference standard was median progression-free survival (NCT01642004, NCT01721759) or surgery (NCT00588445). Machine learning was implemented to select up to four features to develop a radiomics signature in the training datasets and applied to each patient in the validation datasets to classify treatment sensitivity. Results: The radiomics signatures predicted treatment sensitivity in the validation dataset of each study group with AUC (95 confidence interval): nivolumab, 0.77 (0.55–1.00); docetaxel, 0.67 (0.37–0.96); and gefitinib, 0.82 (0.53–0.97). Using serial radiographic measurements, the magnitude of exponential increase in signature features deciphering tumor volume, invasion of tumor boundaries, or tumor spatial heterogeneity was associated with shorter overall survival. Conclusions: Radiomics signatures predicted tumor sensitivity to treatment in patients with NSCLC, offering an approach that could enhance clinical decision-making to continue systemic therapies and forecast overall survival.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谨慎冰海发布了新的文献求助10
1秒前
2秒前
5秒前
卢西完成签到,获得积分10
5秒前
DA发布了新的文献求助10
6秒前
桃子e发布了新的文献求助10
9秒前
bkagyin应助谨慎冰海采纳,获得10
9秒前
10秒前
动听若灵完成签到,获得积分10
10秒前
10秒前
11秒前
格格完成签到 ,获得积分10
12秒前
打打应助小胖采纳,获得10
16秒前
时一列车关注了科研通微信公众号
16秒前
XC发布了新的文献求助30
18秒前
18秒前
lym发布了新的文献求助10
21秒前
隐形曼青应助研友_LN32Mn采纳,获得10
21秒前
21秒前
sxb10101应助米热采纳,获得10
22秒前
菟丝子完成签到,获得积分10
22秒前
科目三应助DA采纳,获得10
24秒前
小宋发布了新的文献求助10
24秒前
淡定访琴完成签到,获得积分10
27秒前
zhao 123完成签到 ,获得积分10
29秒前
水的叶子66完成签到,获得积分10
30秒前
wanci应助粗心的从露采纳,获得10
33秒前
李健的粉丝团团长应助gxc采纳,获得10
37秒前
海滩长颈鹿完成签到,获得积分10
38秒前
40秒前
soda完成签到,获得积分10
40秒前
42秒前
orixero应助等待的谷波采纳,获得10
42秒前
OKOK完成签到,获得积分10
42秒前
43秒前
yohoo发布了新的文献求助10
44秒前
45秒前
46秒前
OKOK发布了新的文献求助10
46秒前
木又权完成签到,获得积分10
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
生活在欺瞒的年代:傅树介政治斗争回忆录 260
Functional Analysis 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5872888
求助须知:如何正确求助?哪些是违规求助? 6492970
关于积分的说明 15670072
捐赠科研通 4990278
什么是DOI,文献DOI怎么找? 2690192
邀请新用户注册赠送积分活动 1632707
关于科研通互助平台的介绍 1590589