Identification of Non–Small Cell Lung Cancer Sensitive to Systemic Cancer Therapies Using Radiomics

多西紫杉醇 医学 无容量 吉非替尼 肺癌 无线电技术 肿瘤科 内科学 置信区间 癌症 实体瘤疗效评价标准 临床试验 放射科 表皮生长因子受体 临床研究阶段 免疫疗法
作者
Laurent Dercle,Matthew P. Fronheiser,Liwu Lin,Shuyan Du,Wendy Hayes,David Leung,Amit Roy,Julia Wilkerson,Pengcheng Guo,Antonio Tito Fojo,Lawrence H. Schwartz,Binsheng Zhao
出处
期刊:Clinical Cancer Research [American Association for Cancer Research]
卷期号:26 (9): 2151-2162 被引量:92
标识
DOI:10.1158/1078-0432.ccr-19-2942
摘要

Abstract Purpose: Using standard-of-care CT images obtained from patients with a diagnosis of non–small cell lung cancer (NSCLC), we defined radiomics signatures predicting the sensitivity of tumors to nivolumab, docetaxel, and gefitinib. Experimental Design: Data were collected prospectively and analyzed retrospectively across multicenter clinical trials [nivolumab, n = 92, CheckMate017 (NCT01642004), CheckMate063 (NCT01721759); docetaxel, n = 50, CheckMate017; gefitinib, n = 46, (NCT00588445)]. Patients were randomized to training or validation cohorts using either a 4:1 ratio (nivolumab: 72T:20V) or a 2:1 ratio (docetaxel: 32T:18V; gefitinib: 31T:15V) to ensure an adequate sample size in the validation set. Radiomics signatures were derived from quantitative analysis of early tumor changes from baseline to first on-treatment assessment. For each patient, 1,160 radiomics features were extracted from the largest measurable lung lesion. Tumors were classified as treatment sensitive or insensitive; reference standard was median progression-free survival (NCT01642004, NCT01721759) or surgery (NCT00588445). Machine learning was implemented to select up to four features to develop a radiomics signature in the training datasets and applied to each patient in the validation datasets to classify treatment sensitivity. Results: The radiomics signatures predicted treatment sensitivity in the validation dataset of each study group with AUC (95 confidence interval): nivolumab, 0.77 (0.55–1.00); docetaxel, 0.67 (0.37–0.96); and gefitinib, 0.82 (0.53–0.97). Using serial radiographic measurements, the magnitude of exponential increase in signature features deciphering tumor volume, invasion of tumor boundaries, or tumor spatial heterogeneity was associated with shorter overall survival. Conclusions: Radiomics signatures predicted tumor sensitivity to treatment in patients with NSCLC, offering an approach that could enhance clinical decision-making to continue systemic therapies and forecast overall survival.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助柠檬采纳,获得10
1秒前
库里晚安完成签到,获得积分10
1秒前
A1len完成签到 ,获得积分10
2秒前
星辰大海应助sokach采纳,获得10
3秒前
新一发布了新的文献求助30
3秒前
守夜人完成签到,获得积分10
3秒前
习习应助孔雀翎采纳,获得10
4秒前
liu完成签到,获得积分10
4秒前
田様应助玉衡璇玑采纳,获得10
5秒前
成就梦松发布了新的文献求助10
5秒前
123完成签到,获得积分10
5秒前
5秒前
5秒前
7秒前
Orange应助123采纳,获得10
7秒前
9秒前
仄言完成签到,获得积分10
9秒前
10秒前
儒雅的斑马完成签到,获得积分10
10秒前
汉堡包应助咕噜仔采纳,获得10
10秒前
FashionBoy应助momo采纳,获得10
10秒前
11秒前
11秒前
12秒前
第七兵团司令完成签到,获得积分10
13秒前
13秒前
qwq应助追梦采纳,获得10
13秒前
13秒前
14秒前
我爱Chem完成签到 ,获得积分10
14秒前
半生发布了新的文献求助30
15秒前
15秒前
成就梦松完成签到,获得积分10
15秒前
byyyy完成签到,获得积分10
15秒前
温暖的俊驰完成签到,获得积分10
16秒前
Isabel完成签到,获得积分10
16秒前
yx应助陈强采纳,获得30
17秒前
sokach发布了新的文献求助10
19秒前
缓慢荔枝发布了新的文献求助10
19秒前
123发布了新的文献求助10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672