Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro

有限元法 断裂(地质) 冯·米塞斯屈服准则 结构工程 压力(语言学) 流离失所(心理学) 生物力学 应变能密度函数 数学 计算机科学 工程类 岩土工程 医学 哲学 心理学 生理学 语言学 心理治疗师
作者
Enrico Schileo,Fulvia Taddei,Luca Cristofolini,Marco Viceconti
出处
期刊:Journal of Biomechanics [Elsevier]
卷期号:41 (2): 356-367 被引量:311
标识
DOI:10.1016/j.jbiomech.2007.09.009
摘要

No agreement on the choice of the failure criterion to adopt for the bone tissue can be found in the literature among the finite element studies aiming at predicting fracture risk of bones. The use of stress-based criteria seems to prevail on strain-based ones, while basic bone biomechanics suggest using strain parameters to describe failure. The aim of the present combined experimental-numerical study was to verify, using subject-specific finite element models able to accurately predict strains, if a strain-based failure criterion could identify the failure patterns of bones. Three cadaver femurs were CT-scanned and subsequently fractured in a clinically relevant single-stance loading scenario. Load-displacement curves and high-speed movies were acquired to define the failure load and the location of fracture onset, respectively. Subject-specific finite element models of the three femurs were built from CT data following a validated procedure. A maximum principal strain criterion was implemented in the finite element models, and two stress-based criteria selected for comparison. The failure loads measured were applied to the models, and the computed risks of fracture were compared to the results of the experimental tests. The proposed principal strain criterion managed to correctly identify the level of failure risk and the location of fracture onset in all the modelled specimens, while Von Mises or maximum principal stress criteria did not give significant information. A maximum principal strain criterion can thus be defined a suitable candidate for the in vivo risk factor assessment on long bones.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
落后秋柳完成签到,获得积分20
刚刚
Akim应助zz采纳,获得10
刚刚
1秒前
三九发布了新的文献求助10
2秒前
科研通AI5应助czq采纳,获得30
2秒前
3秒前
3秒前
3秒前
坦率的松完成签到,获得积分10
3秒前
传奇3应助贤惠的正豪采纳,获得10
4秒前
111发布了新的文献求助10
4秒前
三寒鸦完成签到,获得积分10
4秒前
小木棉发布了新的文献求助10
4秒前
4秒前
少年郎完成签到,获得积分20
5秒前
CipherSage应助123lura采纳,获得10
5秒前
七七完成签到,获得积分10
5秒前
科研通AI2S应助小余采纳,获得10
5秒前
苹果骑士完成签到,获得积分10
5秒前
5秒前
shi hui应助jbhb采纳,获得10
6秒前
6秒前
6秒前
JUSTs0so发布了新的文献求助10
6秒前
长夜变清早完成签到,获得积分10
7秒前
8秒前
8秒前
otaro发布了新的文献求助10
9秒前
yinbin完成签到,获得积分10
9秒前
9秒前
独木舟发布了新的文献求助10
9秒前
白衣未央发布了新的文献求助10
9秒前
脑洞疼应助现实的曼荷采纳,获得10
11秒前
11秒前
轩辕德地发布了新的文献求助10
11秒前
三九完成签到,获得积分10
12秒前
orixero应助少年郎采纳,获得10
12秒前
三金发布了新的文献求助10
12秒前
kuku发布了新的文献求助10
12秒前
土豆你个西红柿完成签到 ,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762