材料科学
阳极
原位
热的
热冲击
电池(电)
辐射
电极
热辐射
休克(循环)
核工程
电子设备和系统的热管理
光电子学
光学
冶金
热力学
机械工程
化学
物理化学
工程类
功率(物理)
内科学
有机化学
物理
医学
作者
Yanan Chen,Yiju Li,Yanbin Wang,Kun Fu,Valencia A. Danner,Jiaqi Dai,Steven D. Lacey,Yonggang Yao,Liangbing Hu
出处
期刊:Nano Letters
[American Chemical Society]
日期:2016-08-09
卷期号:16 (9): 5553-5558
被引量:71
标识
DOI:10.1021/acs.nanolett.6b02096
摘要
High capacity battery electrodes require nanosized components to avoid pulverization associated with volume changes during the charge–discharge process. Additionally, these nanosized electrodes need an electronically conductive matrix to facilitate electron transport. Here, for the first time, we report a rapid thermal shock process using high-temperature radiative heating to fabricate a conductive reduced graphene oxide (RGO) composite with silicon nanoparticles. Silicon (Si) particles on the order of a few micrometers are initially embedded in the RGO host and in situ transformed into 10–15 nm nanoparticles in less than a minute through radiative heating. The as-prepared composites of ultrafine Si nanoparticles embedded in a RGO matrix show great performance as a Li-ion battery (LIB) anode. The in situ nanoparticle synthesis method can also be adopted for other high capacity battery anode materials including tin (Sn) and aluminum (Al). This method for synthesizing high capacity anodes in a RGO matrix can be envisioned for roll-to-roll nanomanufacturing due to the ease and scalability of this high-temperature radiative heating process.
科研通智能强力驱动
Strongly Powered by AbleSci AI