A Hybrid Model for Long-Term Wind Power Forecasting Utilizing NWP Subsequence Correction and Multi-Scale Deep Learning Regression Methods

数值天气预报 风电预测 数据同化 概率预测 天气预报 风力发电 计算机科学 风速 均方误差 气象学 电力系统 数学 功率(物理) 人工智能 统计 工程类 概率逻辑 地理 物理 电气工程 量子力学
作者
Chang Yw,Yang Han,Yuxi Chen,Miao Zhou,Hongji Yang,Yan Wang,Yanru Zhang
出处
期刊:IEEE Transactions on Sustainable Energy [Institute of Electrical and Electronics Engineers]
卷期号:15 (1): 263-275
标识
DOI:10.1109/tste.2023.3283242
摘要

The accuracy of long-term wind power forecasting (WPF) is crucial for the efficient operation of grid systems. However, wind power generation is highly stochastic and intermittent due to the influence of weather, which makes long-term WPF less effective. Numerical weather prediction (NWP) data contains valuable weather forecast information, which can mitigate the negative effects of stochastic weather fluctuations on WPF. However, the accuracy of NWP data decreases over time, and multiple NWP data can have redundancy and errors that make it challenging to extract valid information. Reducing the variety and errors in NWP data and using more effective information extraction methods are essential for improving long-term WPF performance. In this article, we propose a novel long-term WPF hybrid model that corrects NWP wind speed and uses multi-scale deep learning regression prediction to exclude excessive NWP data. We use only the corrected NWP wind speed data to establish a nonlinear mapping relationship with actual power data. The validation case study shows that our proposed model reduces the mean squared error (MSE) and mean absolute error (MAE) by 65.0% and 43.8%, respectively, compared to the current state-of-the-art time series forecasting model in a seven-day forecasting scenario.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
snowwwwwwwwfox完成签到,获得积分10
1秒前
2秒前
SciGPT应助轻松海云采纳,获得10
3秒前
小施完成签到,获得积分10
3秒前
7秒前
7秒前
8秒前
wy完成签到,获得积分10
8秒前
9秒前
Z1完成签到,获得积分10
9秒前
慕豁完成签到,获得积分10
10秒前
10秒前
友好的天奇完成签到,获得积分10
10秒前
10秒前
SN完成签到,获得积分10
12秒前
13秒前
14秒前
14秒前
rundstedt完成签到 ,获得积分10
14秒前
Celeste_J完成签到,获得积分20
14秒前
扭一扭泡一泡完成签到,获得积分10
14秒前
红涛发布了新的文献求助10
15秒前
15秒前
安诺完成签到,获得积分10
15秒前
17秒前
Xccccc发布了新的文献求助10
17秒前
Ava应助苹果采纳,获得10
18秒前
18秒前
TUTU应助西安浴日光能赵炜采纳,获得10
18秒前
呆萌松鼠完成签到,获得积分10
18秒前
pcy完成签到,获得积分10
19秒前
19秒前
19秒前
11发布了新的文献求助10
19秒前
Leif应助SN采纳,获得10
20秒前
北方木棉完成签到 ,获得积分10
21秒前
21秒前
科研通AI2S应助希夷采纳,获得10
21秒前
无辜的南瓜完成签到,获得积分10
21秒前
22秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
An International System for Human Cytogenomic Nomenclature (2024) 500
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3764687
求助须知:如何正确求助?哪些是违规求助? 3309462
关于积分的说明 10149493
捐赠科研通 3024569
什么是DOI,文献DOI怎么找? 1660132
邀请新用户注册赠送积分活动 793125
科研通“疑难数据库(出版商)”最低求助积分说明 755359