The artificial intelligence and design of experiment assisted in the development of progesterone-loaded solid-lipid nanoparticles for transdermal drug delivery

透皮 固体脂质纳米粒 药物输送 药品 纳米颗粒 药理学 计算机科学 生物医学工程 纳米技术 材料科学 医学
作者
Phuvamin Suriyaamporn,Boonnada Pamornpathomkul,Pawaris Wongprayoon,Theerasak Rojanarata,Tanasait Ngawhirunpat,Praneet Opanasopit
出处
期刊:Фармация 卷期号:71: 1-12 被引量:3
标识
DOI:10.3897/pharmacia.71.e123549
摘要

The application of Artificial Intelligence (AI) has the potential to revolutionize the formulation development of nanomedicine. This study investigated the physicochemical characteristics of progesterone-loaded solid-lipid nanoparticles (PG-SLNs) produced through an emulsification–ultrasonication process, with a focus on demonstrating the efficacy of this controlled preparation method via the Design of Experiments (DoE) and Artificial Neural Networks (ANN). Critical quality factors, including stearic acid, medium chain triglycerides (MCT), Pluronic F-127, and the amount of propylene glycol (PG), were explored using DoE to streamline experimental setups. The concentration of stearic acid was identified as a crucial factor influencing PG-SLN physicochemical properties, impacting particle size (PS), polydispersity index (PDI), zeta potential (ZP), and %drug loading (%DL). Optimal conditions for PS, PDI, ZP, and %DL were identified. DoE revealed acceptable values across multiple runs, and the ANN model demonstrates high prediction accuracy, surpassing Response Surface Methodology (RSM). The selected PG-SLN formulation was tested for transdermal drug delivery, showing improved permeation compared to PG suspension. Loading with limonene further enhances transdermal drug delivery, attributed to limonene’s role as a penetration enhancer. Moreover, the selected PG-SLN formulation was found to be safe and non-toxic to neuronal cells. The combination of DoE and ANN was proposed to enhance predictive ability. This research highlights the potential of PG-SLNs in transdermal drug delivery, emphasizing the role of limonene as a safe and effective enhancer. The study contributes to the growing interest in applying AI tools in pharmaceutical and biomedical fields for improved predictive modeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xtt完成签到,获得积分10
1秒前
一碗云吞面完成签到,获得积分10
1秒前
正直的新筠完成签到,获得积分10
1秒前
David发布了新的文献求助10
1秒前
斯文败类应助过儿采纳,获得10
1秒前
Dory完成签到,获得积分10
2秒前
大个应助cc采纳,获得10
4秒前
4秒前
乐楽发布了新的文献求助10
5秒前
漫画发布了新的文献求助10
5秒前
阿柒发布了新的文献求助10
5秒前
小蘑菇应助natalie采纳,获得10
7秒前
zhou发布了新的文献求助10
8秒前
10秒前
李健的小迷弟应助Dean采纳,获得10
10秒前
万能图书馆应助无情凡英采纳,获得30
11秒前
11秒前
xtt发布了新的文献求助10
12秒前
肥嘟嘟左卫门完成签到,获得积分20
12秒前
Ttttt发布了新的文献求助10
13秒前
丘比特应助体贴的兔子采纳,获得10
16秒前
领导范儿应助zhou采纳,获得10
17秒前
典雅的乞完成签到 ,获得积分10
17秒前
不会打预防针完成签到,获得积分10
17秒前
19秒前
从容的巧曼完成签到 ,获得积分10
19秒前
乐乐应助富贵小粉猪采纳,获得10
20秒前
科研123完成签到,获得积分10
21秒前
24秒前
Dean发布了新的文献求助10
24秒前
曾经荔枝发布了新的文献求助10
25秒前
跳跃的惮完成签到,获得积分10
25秒前
无情凡英完成签到 ,获得积分10
26秒前
GK发布了新的文献求助10
28秒前
高高完成签到 ,获得积分10
28秒前
Dr发布了新的文献求助10
29秒前
搜集达人应助Dr采纳,获得10
32秒前
LYSM应助tzy采纳,获得20
33秒前
35秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 970
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Forensic Chemistry 400
Toward personalized care for insomnia in the US Army: a machine learning model to predict response to cognitive behavioral therapy for insomnia 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3392438
求助须知:如何正确求助?哪些是违规求助? 3003056
关于积分的说明 8807330
捐赠科研通 2689817
什么是DOI,文献DOI怎么找? 1473309
科研通“疑难数据库(出版商)”最低求助积分说明 681528
邀请新用户注册赠送积分活动 674351