In vitro development and optimization of cell-laden injectable bioprinted gelatin methacryloyl (GelMA) microgels mineralized on the nanoscale

明胶 生物医学工程 骨细胞 矿化(土壤科学) 化学 材料科学 再生医学 纳米技术 组织工程 3D生物打印 细胞 体外 成骨细胞 生物化学 医学 有机化学 氮气
作者
Maurício Gonçalves da Costa Sousa,Gabriela de Souza Balbinot,Ramesh Subbiah,Rahul Madathiparambil Visalakshan,Anthony Tahayeri,Maria Elisa Lima Verde,Avathamsa Athirasala,Genevieve E. Romanowicz,Robert E. Guldberg,Luiz E. Bertassoni
出处
期刊:Biomaterials advances 卷期号:159: 213805-213805 被引量:1
标识
DOI:10.1016/j.bioadv.2024.213805
摘要

Bone defects may occur in different sizes and shapes due to trauma, infections, and cancer resection. Autografts are still considered the primary treatment choice for bone regeneration. However, they are hard to source and often create donor-site morbidity. Injectable microgels have attracted much attention in tissue engineering and regenerative medicine due to their ability to replace inert implants with a minimally invasive delivery. Here, we developed novel cell-laden bioprinted gelatin methacrylate (GelMA) injectable microgels, with controllable shapes and sizes that can be controllably mineralized on the nanoscale, while stimulating the response of cells embedded within the matrix. The injectable microgels were mineralized using a calcium and phosphate-rich medium that resulted in nanoscale crystalline hydroxyapatite deposition and increased stiffness within the crosslinked matrix of bioprinted GelMA microparticles. Next, we studied the effect of mineralization in osteocytes, a key bone homeostasis regulator. Viability stains showed that osteocytes were maintained at 98 % viability after mineralization with elevated expression of sclerostin in mineralized compared to non-mineralized microgels, showing that mineralization can effectively enhances osteocyte maturation. Based on our findings, bioprinted mineralized GelMA microgels appear to be an efficient material to approximate the bone microarchitecture and composition with desirable control of sample injectability and polymerization. These bone-like bioprinted mineralized biomaterials are exciting platforms for potential minimally invasive translational methods in bone regenerative therapies.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wanci应助风趣的傲之采纳,获得10
1秒前
sail完成签到,获得积分10
1秒前
3秒前
faith发布了新的文献求助10
3秒前
cyy完成签到,获得积分20
3秒前
JamesPei应助斯文又夏采纳,获得10
3秒前
3秒前
4秒前
舒心大米发布了新的文献求助10
4秒前
4秒前
科目三应助顺利毕业采纳,获得10
5秒前
6秒前
tachikoma应助ysm采纳,获得10
7秒前
7秒前
LHT发布了新的文献求助10
8秒前
南华完成签到 ,获得积分10
9秒前
9秒前
123456761完成签到,获得积分10
10秒前
10秒前
10秒前
Tiamo发布了新的文献求助10
10秒前
11秒前
宇神发布了新的文献求助10
11秒前
77完成签到,获得积分10
15秒前
15秒前
LRX完成签到,获得积分10
15秒前
爆米花应助傲娇的寻凝采纳,获得10
16秒前
Jinyi发布了新的文献求助10
16秒前
huangsi发布了新的文献求助10
16秒前
有梦想的人不睡觉完成签到,获得积分10
16秒前
Lucas应助zzz采纳,获得10
16秒前
16秒前
混分的三百块完成签到,获得积分10
17秒前
18秒前
坚持就是胜利完成签到 ,获得积分10
19秒前
20秒前
孔刚完成签到 ,获得积分10
21秒前
ning发布了新的文献求助10
21秒前
乐妙发布了新的文献求助10
22秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 990
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
A Simple Constitutive Description for Cellular Concrete 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3395488
求助须知:如何正确求助?哪些是违规求助? 3005502
关于积分的说明 8817342
捐赠科研通 2692402
什么是DOI,文献DOI怎么找? 1474828
科研通“疑难数据库(出版商)”最低求助积分说明 682190
邀请新用户注册赠送积分活动 675328