Using Social Network Activity Data to Identify and Target Job Seekers

杠杆(统计) 探索者 计算机科学 隐马尔可夫模型 社交网络(社会语言学) 采购 数据科学 业务 营销 机器学习 人工智能 万维网 社会化媒体 政治学 法学
作者
Peter Ebbes,Oded Netzer
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:68 (4): 3026-3046 被引量:2
标识
DOI:10.1287/mnsc.2021.3995
摘要

An important challenge for many firms is to identify the life transitions of its customers, such as job searching, expecting a child, or purchasing a home. Inferring such transitions, which are generally unobserved to the firm, can offer the firms opportunities to be more relevant to their customers. In this paper, we demonstrate how a social network platform can leverage its longitudinal user data to identify which of its users are likely to be job seekers. Identifying job seekers is at the heart of the business model of professional social network platforms. Our proposed approach builds on the hidden Markov model (HMM) framework to recover the latent state of job search from noisy signals obtained from social network activity data. Specifically, we use the latent states of the HMM to fuse cross-sectional survey responses to a job-seeking status question with longitudinal user activity data, resulting in a partially HMM. Thus, in some time periods, and for some users, we observe a direct measure of the true job-seeking status. We demonstrate that the proposed model can predict not only which users are likely to be job seeking at any point in time but also what activities on the platform are associated with job search and how long the users have been job seeking. Furthermore, we find that targeting job seekers based on our proposed approach can lead to a 29% increase in profits of a targeting campaign relative to the approach that was used by the social network platform. This paper was accepted by Juanjuan Zhang, marketing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
陈瑶发布了新的文献求助30
3秒前
Jasper应助欣慰的无颜采纳,获得10
4秒前
4秒前
5秒前
刘老哥6完成签到,获得积分10
5秒前
7秒前
7秒前
呆萌代桃完成签到,获得积分10
10秒前
似非完成签到,获得积分20
10秒前
chr完成签到,获得积分10
10秒前
柒柒发布了新的文献求助10
11秒前
12秒前
顾矜应助zwy109采纳,获得10
14秒前
烛夜黎发布了新的文献求助10
16秒前
antonia1031应助三太子采纳,获得10
16秒前
明明勇勇乐完成签到 ,获得积分10
24秒前
holy完成签到,获得积分10
24秒前
酷波er应助林夕君采纳,获得10
25秒前
30秒前
Evan完成签到,获得积分10
31秒前
Hello应助干净青亦采纳,获得10
32秒前
Luffa完成签到,获得积分10
33秒前
懦弱的难敌完成签到 ,获得积分10
34秒前
36秒前
芳hanbing20129_完成签到,获得积分10
40秒前
林夕君发布了新的文献求助10
41秒前
科研通AI2S应助高山我梦采纳,获得10
43秒前
tcj完成签到,获得积分10
44秒前
46秒前
诗剑逍遥完成签到,获得积分10
49秒前
cocolu应助无情黑米采纳,获得10
49秒前
手机应助矢思然采纳,获得10
49秒前
50秒前
小琥同学完成签到,获得积分10
50秒前
sukai发布了新的文献求助10
51秒前
猫南北完成签到,获得积分20
51秒前
dd完成签到,获得积分10
53秒前
54秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3329591
求助须知:如何正确求助?哪些是违规求助? 2959170
关于积分的说明 8594608
捐赠科研通 2637675
什么是DOI,文献DOI怎么找? 1443672
科研通“疑难数据库(出版商)”最低求助积分说明 668807
邀请新用户注册赠送积分活动 656231