Speaker-Aware Cognitive network with Cross-Modal Attention for Multimodal Emotion recognition in conversation

对话 情态动词 情绪识别 认知 语音识别 心理学 计算机科学 沟通 化学 神经科学 高分子化学
作者
Lili Guo,Song Yi,Shifei Ding
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:296: 111969-111969
标识
DOI:10.1016/j.knosys.2024.111969
摘要

Emotion recognition in conversation (ERC) has gained considerable attention owing to its extensive applications in the field of human-computer interaction. However, previous models have had certain limitations in exploring the potential emotional relationships within the conversation due to their inability to fully leverage speaker information. Additionally, information from various modalities such as text, audio, and video can synergistically enhance and supplement the analysis of emotional context within the conversation. Nonetheless, effectively fusing multimodal features to understand the detailed contextual information in the conversation is challenging. This paper proposes a speaker-aware cognitive network with cross-modal attention (SACCMA) for multimodal ERC to effectively leverage multimodal information and speaker information. Our proposed model primarily consists of the modality encoder and the cognitive module. The modality encoder is employed to fuse multimodal feature information from speech, text, and vision using a cross-modal attention mechanism. Subsequently, the fused features and speaker information are separately fed into the cognitive module to enhance the perception of emotions within the dialogue. Compared to seven common baseline methods, our model increased the Accuracy score by 2.71% and 1.70% on the IEMOCAP and MELD datasets, respectively. Additionally, the F1 score improved by 2.92% and 0.70% for each dataset. Various experiments also demonstrate the effectiveness of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助大气早晨采纳,获得10
1秒前
2秒前
伈X发布了新的文献求助10
2秒前
3秒前
搜集达人应助依霏采纳,获得10
3秒前
4秒前
4秒前
认真乐双发布了新的文献求助10
5秒前
5秒前
6秒前
8秒前
8秒前
友好的谷兰完成签到,获得积分10
8秒前
小脑斧完成签到,获得积分10
9秒前
1234发布了新的文献求助10
9秒前
积极香菇完成签到,获得积分10
9秒前
楠楠完成签到,获得积分10
10秒前
11秒前
12秒前
MaRt111n完成签到,获得积分10
12秒前
cj完成签到,获得积分10
12秒前
欣喜平蝶发布了新的文献求助30
12秒前
刘美丽完成签到,获得积分10
14秒前
竭缘发布了新的文献求助10
14秒前
15秒前
KASTTTTTT完成签到,获得积分10
16秒前
小二郎应助坦率采纳,获得10
16秒前
16秒前
yatou5651发布了新的文献求助10
16秒前
Lucas应助123采纳,获得10
17秒前
17秒前
希望天下0贩的0应助Accepted采纳,获得10
17秒前
18秒前
123完成签到,获得积分10
18秒前
19秒前
20秒前
wtjjjjjj发布了新的文献求助30
20秒前
小二郎应助JIE采纳,获得10
20秒前
飞鸟发布了新的文献求助10
20秒前
21秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156964
求助须知:如何正确求助?哪些是违规求助? 2808328
关于积分的说明 7877268
捐赠科研通 2466845
什么是DOI,文献DOI怎么找? 1313040
科研通“疑难数据库(出版商)”最低求助积分说明 630355
版权声明 601919