期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers] 日期:2025-01-01卷期号:: 1-1
标识
DOI:10.1109/tmi.2024.3525095
摘要
Unsupervised domain adaptation (UDA) in medical image segmentation aims to improve the generalization of deep models by alleviating domain gaps caused by inconsistency across equipment, imaging protocols, and patient conditions. However, existing UDA works remain insufficiently explored and present great limitations: (i) Exhibit cumbersome designs that prioritize aligning statistical metrics and distributions, which limits the model's flexibility and generalization while also overlooking the potential knowledge embedded in unlabeled data; (ii) More applicable in a certain domain, lack the generalization capability to handle diverse shifts encountered in clinical scenarios. To overcome these limitations, we introduce MedCon , a unified framework that leverages general unsupervised contrastive pre-training to establish domain connections, effectively handling diverse domain shifts without tailored adjustments. Specifically, it initially explores a general contrastive pre-training to establish domain connections by leveraging the rich prior knowledge from unlabeled images. Thereafter, the pre-trained backbone is fine-tuned using source-based images to ultimately identify per-pixel semantic categories. To capture both intra- and inter-domain connections of anatomical structures, we construct positive-negative pairs from a hybrid aspect of both local and global scales. In this regard, a shared-weight encoder-decoder is employed to generate pixel-level representations, which are then mapped into hyper-spherical space using a non-learnable projection head to facilitate positive pair matching. Comprehensive experiments on diverse medical image datasets confirm that MedCon outperforms previous methods by effectively managing a wide range of domain shifts and showcasing superior generalization capabilities.