材料科学
肿胀 的
自愈水凝胶
聚合物
涂层
聚合
复合材料
扩散
层状结构
胶粘剂
弹性模量
化学工程
图层(电子)
纳米技术
高分子化学
热力学
物理
工程类
作者
Murat Güvendiren,Shu Yang,Jason A. Burdick
标识
DOI:10.1002/adfm.200900622
摘要
Abstract Hydrogels with controlled surface patterns are useful for a range of applications, including in microdevices, sensors, coatings, and adhesives. In this work, a simple and robust method to generate a wide range of osmotically driven surface patterns, including random, lamellar, peanut, and hexagonal structures is developed. This method does not require the use of organic solvents for swelling, pre‐patterning of the film surface, or coating of a second layer on the gel. The patterns are fabricated by exposing a photocurable formulation to light while open to air and then swelling, using oxygen inhibition of the radical polymerization at the surface to create a gradient of crosslinking with depth, which was confirmed by measuring the double bond conversion at the surface, surface mechanics, and molecule diffusion into the network. The modulus gradient, and hence osmotic pressure, is controlled by the crosslinker concentration, and the characteristic size of the patterns is determined by the initial film thickness. The patterns are stable in both swollen and dry states, creating a versatile approach that is useful for diverse polymers to create complex patterns with long‐range order.
科研通智能强力驱动
Strongly Powered by AbleSci AI