Autodock Vina Adopts More Accurate Binding Poses but Autodock4 Forms Better Binding Affinity

对接(动物) 自动停靠 计算机科学 化学 计算生物学 生物 生物化学 医学 基因 护理部 生物信息学
作者
Nguyen Thanh Nguyen,Trung Hai Nguyen,T. Ngoc Han Pham,Huy Truong Nguyen,Mai Van Bay,Phạm Minh Quân,Pham Cam Nam,Van V. Vu,Son Tung Ngo
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:60 (1): 204-211 被引量:308
标识
DOI:10.1021/acs.jcim.9b00778
摘要

The binding pose and affinity between a ligand and enzyme are very important pieces of information for computer-aided drug design. In the initial stage of a drug discovery project, this information is often obtained by using molecular docking methods. Autodock4 and Autodock Vina are two commonly used open-source and free software tools to perform this task, and each has been cited more than 6000 times in the last ten years. It is of great interest to compare the success rate of the two docking software programs for a large and diverse set of protein–ligand complexes. In this study, we selected 800 protein–ligand complexes for which both PDB structures and experimental binding affinity are available. Docking calculations were performed for these complexes using both Autodock4 and Autodock Vina with different docking options related to computing resource consumption and accuracy. Our calculation results are in good agreement with a previous study that the Vina approach converges much faster than AD4 one. However, interestingly, AD4 shows a better performance than Vina over 21 considered targets, whereas the Vina protocol is better than the AD4 package for 10 other targets. There are 16 complexes for which both the AD4 and Vina protocols fail to produce a reasonable correlation with respected experiments so both are not suitable to use to estimate binding free energies for these cases. In addition, the best docking option for performing the AD4 approach is the long option. However, the short option is the best solution for carrying out Vina docking. The obtained results probably will be useful for future docking studies in deciding which program to use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
糖丸完成签到,获得积分10
2秒前
4秒前
专注的彤关注了科研通微信公众号
4秒前
桃桃发布了新的文献求助10
4秒前
NexusExplorer应助strings采纳,获得10
6秒前
李爱国应助雾草生采纳,获得10
6秒前
6秒前
9秒前
10秒前
ForestEcho完成签到,获得积分10
10秒前
轻松汲发布了新的文献求助10
11秒前
Luzon完成签到,获得积分10
12秒前
李爱国应助星落枝头采纳,获得10
13秒前
张占完成签到,获得积分10
13秒前
Sherry发布了新的文献求助10
13秒前
barbary发布了新的文献求助10
14秒前
cfy发布了新的文献求助10
15秒前
Chikit完成签到,获得积分0
16秒前
化工兔应助琮博采纳,获得10
17秒前
17秒前
哈比完成签到,获得积分10
17秒前
18秒前
大气的紫萍完成签到,获得积分10
19秒前
cherish3232完成签到 ,获得积分10
19秒前
汉堡包应助wyg117采纳,获得10
20秒前
无花果应助ri_290采纳,获得10
20秒前
心房子完成签到,获得积分10
21秒前
平淡思雁完成签到,获得积分10
21秒前
Panacea发布了新的文献求助10
22秒前
Nancy完成签到,获得积分10
24秒前
guojingjing发布了新的文献求助10
24秒前
24秒前
27秒前
xxT发布了新的文献求助10
28秒前
29秒前
lchenbio完成签到,获得积分10
30秒前
ling发布了新的文献求助10
31秒前
英姑应助科研通管家采纳,获得10
31秒前
科研通AI2S应助科研通管家采纳,获得10
31秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1100
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Essentials of thematic analysis 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3115900
求助须知:如何正确求助?哪些是违规求助? 2765944
关于积分的说明 7684835
捐赠科研通 2421282
什么是DOI,文献DOI怎么找? 1285521
科研通“疑难数据库(出版商)”最低求助积分说明 620101
版权声明 599808