Sparse Observation Assimilated Digital Image Correlation for High Fidelity Deformation Field Reconstruction

数字图像相关 亚像素渲染 计算机科学 稳健性(进化) 人工智能 计算机视觉 基本事实 算法 像素 光学 生物化学 化学 物理 基因
作者
Bangyan Niu,Jingjing Ji
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (2): 1641-1650
标识
DOI:10.1109/tii.2023.3280327
摘要

Digital image correlation (DIC) is an image-based deformation measurement method, which has been widely used in multiple cutting-edge fields, benefitted from its noncontact, low cost and high robustness. However, achieving higher accuracy and overcoming the tradeoff between resolution and measurement uncertainty have been recognized as bottleneck problems for DIC. This paper proposes a new method by assimilating sparse observations into DIC, constituting “Assimilated DIC”, to reconstruct deformation fields with high fidelity. In the proposed method, the subpixel registration process in the traditional DIC procedure is viewed as a dynamic model, which constitutes the basis for assimilation. Meanwhile, the sparse observation provides highly accurate guidance for correcting the dynamic model, thus facilitating the update of model data towards the ground-truth. In addition to effectively improving the measurement accuracy without lowering the computational efficiency, Assimilated DIC can obtain a higher resolution without compromising the accuracy performance. And the boundary regions of multi-connected structures, which are generally subject to large errors by traditional methods, can be precisely reconstructed by Assimilated DIC. In this work, the proposed method with two types of observations on strain and displacement has been experimentally validated under various deformation cases, including a rigid-body translation, a heterogeneous deformation, and an extension of a holed plate. These excellent properties of Assimilated DIC have been confirmed in comparison with those of a traditional DIC method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
果酱君完成签到,获得积分10
1秒前
JamesPei应助尉迟逸雪采纳,获得30
2秒前
一粟的粉r完成签到 ,获得积分10
3秒前
xiaoyan完成签到,获得积分10
4秒前
Rainnn发布了新的文献求助10
5秒前
乐乐应助Faye采纳,获得10
5秒前
6秒前
旺旺完成签到 ,获得积分10
6秒前
ding应助xiaohongmao采纳,获得10
7秒前
踏实凡梦完成签到 ,获得积分10
7秒前
zq发布了新的文献求助10
7秒前
不懈奋进应助斯文谷秋采纳,获得30
9秒前
常尽欢完成签到 ,获得积分10
9秒前
SXYYXS完成签到,获得积分10
9秒前
10秒前
研友_851pY8完成签到,获得积分10
12秒前
NexusExplorer应助疯狂的虔采纳,获得10
14秒前
14秒前
咕噜发布了新的文献求助10
16秒前
17秒前
初始发布了新的文献求助10
17秒前
18秒前
18秒前
花骨头发布了新的文献求助150
19秒前
LX-ik发布了新的文献求助10
20秒前
20秒前
20秒前
研友_xnEOX8完成签到,获得积分10
21秒前
21秒前
22秒前
zq发布了新的文献求助10
22秒前
22秒前
苞米面粥完成签到,获得积分10
23秒前
Junehe发布了新的文献求助10
24秒前
菠菜菜str完成签到,获得积分10
25秒前
25秒前
未何发布了新的文献求助10
26秒前
高高梦山发布了新的文献求助10
26秒前
研友_xnEOX8发布了新的文献求助10
26秒前
27秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
SIS-ISO/IEC TS 27100:2024 Information technology — Cybersecurity — Overview and concepts (ISO/IEC TS 27100:2020, IDT)(Swedish Standard) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3232979
求助须知:如何正确求助?哪些是违规求助? 2879598
关于积分的说明 8212194
捐赠科研通 2547147
什么是DOI,文献DOI怎么找? 1376549
科研通“疑难数据库(出版商)”最低求助积分说明 647659
邀请新用户注册赠送积分活动 623067