Amino acid metabolism reprogramming: shedding new light on T cell anti-tumor immunity

氨基酸 生物 新陈代谢 串扰 肿瘤微环境 代谢途径 生物化学 重编程 免疫系统 细胞生物学 细胞 免疫学 光学 物理
作者
Yue Zheng,Yiran Yao,Tongxin Ge,Shengfang Ge,Renbing Jia,Xin Song,Ai Zhuang
出处
期刊:Journal of Experimental & Clinical Cancer Research [Springer Nature]
卷期号:42 (1) 被引量:13
标识
DOI:10.1186/s13046-023-02845-4
摘要

Abstract Metabolic reprogramming of amino acids has been increasingly recognized to initiate and fuel tumorigenesis and survival. Therefore, there is emerging interest in the application of amino acid metabolic strategies in antitumor therapy. Tremendous efforts have been made to develop amino acid metabolic node interventions such as amino acid antagonists and targeting amino acid transporters, key enzymes of amino acid metabolism, and common downstream pathways of amino acid metabolism. In addition to playing an essential role in sustaining tumor growth, new technologies and studies has revealed amino acid metabolic reprograming to have wide implications in the regulation of antitumor immune responses. Specifically, extensive crosstalk between amino acid metabolism and T cell immunity has been reported. Tumor cells can inhibit T cell immunity by depleting amino acids in the microenvironment through nutrient competition, and toxic metabolites of amino acids can also inhibit T cell function. In addition, amino acids can interfere with T cells by regulating glucose and lipid metabolism. This crucial crosstalk inspires the exploitation of novel strategies of immunotherapy enhancement and combination, owing to the unprecedented benefits of immunotherapy and the limited population it can benefit. Herein, we review recent findings related to the crosstalk between amino acid metabolism and T cell immunity. We also describe possible approaches to intervene in amino acid metabolic pathways by targeting various signaling nodes. Novel efforts to combine with and unleash potential immunotherapy are also discussed. Hopefully, some strategies that take the lead in the pipeline may soon be used for the common good.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yasmine完成签到,获得积分10
1秒前
1秒前
慕青应助ColdSunWu采纳,获得10
1秒前
威武鸽子发布了新的文献求助10
2秒前
叶言发布了新的文献求助30
2秒前
4秒前
舒适涵山完成签到,获得积分10
6秒前
6秒前
6秒前
声声慢完成签到,获得积分10
6秒前
共享精神应助乔心采纳,获得10
7秒前
7秒前
粽子完成签到,获得积分10
8秒前
9秒前
YOLO完成签到,获得积分10
11秒前
xfxx发布了新的文献求助30
11秒前
14秒前
今后应助Tache采纳,获得10
15秒前
17秒前
慕新发布了新的文献求助10
19秒前
19秒前
Damocles完成签到,获得积分10
20秒前
叶言完成签到,获得积分10
20秒前
liuce0307完成签到,获得积分10
23秒前
木木三完成签到,获得积分10
23秒前
24秒前
专注的飞瑶完成签到 ,获得积分10
24秒前
情怀应助Damocles采纳,获得10
26秒前
27秒前
27秒前
caixiaobinger完成签到 ,获得积分10
28秒前
都是发布了新的文献求助30
28秒前
ardejiang发布了新的文献求助10
29秒前
30秒前
汪汪发布了新的文献求助10
31秒前
vickeylea发布了新的文献求助10
32秒前
33秒前
33秒前
CipherSage应助都是采纳,获得10
35秒前
大模型应助奋斗枫采纳,获得10
36秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157313
求助须知:如何正确求助?哪些是违规求助? 2808757
关于积分的说明 7878369
捐赠科研通 2467114
什么是DOI,文献DOI怎么找? 1313219
科研通“疑难数据库(出版商)”最低求助积分说明 630369
版权声明 601919