Machine learning provides insights for spatially explicit pest management strategies by integrating information on population connectivity and habitat use in a key agricultural pest

生物扩散 栖息地 人口 生态学 有害生物分析 地理 病虫害综合治理 农业 环境资源管理 丰度(生态学) 环境科学 生物 植物 人口学 社会学
作者
Jinyu Li,Bang Zhang,Jia Jiang,Yi Mao,Kai Li,Fengjing Liu
出处
期刊:Pest Management Science [Wiley]
卷期号:80 (10): 4871-4882
标识
DOI:10.1002/ps.8199
摘要

Abstract BACKGROUND Insect pests have garnered increasing interest because of anthropogenic global change, and their sustainable management requires knowledge of population habitat use and spread patterns. To enhance this knowledge for the prevalent tea pest Empoasca onukii , we utilized a random forest algorithm and a bivariate map to develop and integrate models of its habitat suitability and genetic connectivity across China. RESULTS Our modeling revealed heterogeneous spatial patterns in suitability and connectivity despite the common key environmental predictor of isothermality. Analyses indicated that tea cultivation in areas surrounding the Tibetan Plateau and the southern tip of China may be at low risk of population outbreaks because of their predicted low suitability and connectivity. However, regions along the middle and lower reaches of the Yangtze River should consider the high abundance and high recolonization potential of E. onukii , and thus the importance of control measures. Our results also emphasized the need to prevent dispersal from outside regions in the areas north of the Yangtze River and highlighted the effectiveness of internal management efforts in southwestern China and along the southeastern coast. Further projections under future conditions suggested the potential for increased abundance and spread in regions north of the Yangtze River and the southern tip of China, and indicated the importance of long‐term monitoring efforts in these areas. CONCLUSION These findings highlighted the significance of combining information on habitat use and spread patterns for spatially explicit pest management planning. In addition, the approaches we used have potential applications in the management of other pest systems and the conservation of endangered biological resources. © 2024 Society of Chemical Industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_X89o6n完成签到,获得积分10
2秒前
orixero应助第五明月采纳,获得10
3秒前
华仔应助俭朴的猫咪采纳,获得10
6秒前
研究材料的12年枪迷完成签到,获得积分10
7秒前
CodeCraft应助王永文采纳,获得10
10秒前
顾矜应助Siri烤布蕾采纳,获得30
10秒前
wanci应助VVValentin采纳,获得10
12秒前
Keep完成签到,获得积分10
14秒前
14秒前
乐观无心发布了新的文献求助10
15秒前
15秒前
15秒前
科研通AI5应助舒心的老四采纳,获得10
17秒前
haui完成签到,获得积分10
19秒前
20秒前
王永文发布了新的文献求助10
20秒前
scijun应助稳重诗珊采纳,获得10
20秒前
36456657应助issmoon采纳,获得10
20秒前
地老天框完成签到,获得积分10
21秒前
22秒前
Owen应助JFH采纳,获得20
22秒前
zzr发布了新的文献求助30
22秒前
Paper多多完成签到,获得积分10
22秒前
23秒前
25秒前
王永文完成签到,获得积分10
25秒前
星辰大海应助CeciliaLee采纳,获得10
27秒前
自由的问夏完成签到,获得积分20
28秒前
28秒前
龙龙ff11_发布了新的文献求助10
30秒前
李echo发布了新的文献求助10
30秒前
31秒前
自信寒蕾发布了新的文献求助10
31秒前
晒黑的雪碧完成签到,获得积分10
31秒前
123123123关注了科研通微信公众号
32秒前
34秒前
jimskylxk发布了新的文献求助10
35秒前
35秒前
zsg完成签到,获得积分10
37秒前
彩色的秋白完成签到,获得积分10
37秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3479631
求助须知:如何正确求助?哪些是违规求助? 3070230
关于积分的说明 9117075
捐赠科研通 2761943
什么是DOI,文献DOI怎么找? 1515594
邀请新用户注册赠送积分活动 701041
科研通“疑难数据库(出版商)”最低求助积分说明 699985