Machine learning provides insights for spatially explicit pest management strategies by integrating information on population connectivity and habitat use in a key agricultural pest

生物扩散 栖息地 人口 生态学 有害生物分析 地理 病虫害综合治理 农业 环境资源管理 丰度(生态学) 环境科学 生物 植物 人口学 社会学
作者
Jinyu Li,Bang Zhang,Jia Jiang,Yi Mao,Kai Li,Fengjing Liu
出处
期刊:Pest Management Science [Wiley]
卷期号:80 (10): 4871-4882
标识
DOI:10.1002/ps.8199
摘要

Abstract BACKGROUND Insect pests have garnered increasing interest because of anthropogenic global change, and their sustainable management requires knowledge of population habitat use and spread patterns. To enhance this knowledge for the prevalent tea pest Empoasca onukii , we utilized a random forest algorithm and a bivariate map to develop and integrate models of its habitat suitability and genetic connectivity across China. RESULTS Our modeling revealed heterogeneous spatial patterns in suitability and connectivity despite the common key environmental predictor of isothermality. Analyses indicated that tea cultivation in areas surrounding the Tibetan Plateau and the southern tip of China may be at low risk of population outbreaks because of their predicted low suitability and connectivity. However, regions along the middle and lower reaches of the Yangtze River should consider the high abundance and high recolonization potential of E. onukii , and thus the importance of control measures. Our results also emphasized the need to prevent dispersal from outside regions in the areas north of the Yangtze River and highlighted the effectiveness of internal management efforts in southwestern China and along the southeastern coast. Further projections under future conditions suggested the potential for increased abundance and spread in regions north of the Yangtze River and the southern tip of China, and indicated the importance of long‐term monitoring efforts in these areas. CONCLUSION These findings highlighted the significance of combining information on habitat use and spread patterns for spatially explicit pest management planning. In addition, the approaches we used have potential applications in the management of other pest systems and the conservation of endangered biological resources. © 2024 Society of Chemical Industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芳芳完成签到,获得积分10
1秒前
zz完成签到,获得积分10
1秒前
酷炫的虔纹完成签到,获得积分10
2秒前
相忘于江湖完成签到,获得积分10
2秒前
wangli完成签到,获得积分10
2秒前
3秒前
bing_han完成签到,获得积分10
3秒前
4秒前
away发布了新的文献求助10
5秒前
魔幻安南完成签到 ,获得积分10
5秒前
狼主完成签到 ,获得积分10
5秒前
李怀玉完成签到,获得积分10
5秒前
guangshuang完成签到 ,获得积分10
5秒前
繁荣的映雁完成签到,获得积分10
6秒前
大模型应助hailang820316采纳,获得10
7秒前
再睡十分钟完成签到,获得积分10
7秒前
7秒前
洁净之柔完成签到,获得积分10
8秒前
成就的沛菡完成签到,获得积分10
9秒前
PolarLuo完成签到,获得积分10
9秒前
微草发布了新的文献求助10
9秒前
guojingjing发布了新的文献求助10
9秒前
10秒前
苗条馒头完成签到,获得积分10
10秒前
10秒前
哈哈哈完成签到,获得积分10
10秒前
南城花开完成签到 ,获得积分10
10秒前
干净羊青完成签到,获得积分10
11秒前
华仔应助小胡采纳,获得10
11秒前
huhuan完成签到,获得积分10
11秒前
Ricky完成签到,获得积分10
13秒前
13秒前
圈圈完成签到 ,获得积分10
15秒前
SXR完成签到,获得积分10
16秒前
三三得九完成签到 ,获得积分10
16秒前
17秒前
木木完成签到,获得积分10
17秒前
ls完成签到,获得积分10
18秒前
吾身无拘完成签到,获得积分10
18秒前
Owen应助sino-ft采纳,获得10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555935
求助须知:如何正确求助?哪些是违规求助? 3131542
关于积分的说明 9391519
捐赠科研通 2831325
什么是DOI,文献DOI怎么找? 1556415
邀请新用户注册赠送积分活动 726573
科研通“疑难数据库(出版商)”最低求助积分说明 715890