Review on Convolutional Neural Networks (CNN) in vegetation remote sensing

计算机科学 卷积神经网络 深度学习 植被(病理学) 人工智能 遥感 分割 灵活性(工程) 空间分析 模块化(生物学) 像素 机器学习 地理 医学 遗传学 生物 统计 数学 病理
作者
Teja Kattenborn,Jens Leitloff,Felix Schiefer,Stefan Hinz
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:173: 24-49 被引量:930
标识
DOI:10.1016/j.isprsjprs.2020.12.010
摘要

Identifying and characterizing vascular plants in time and space is required in various disciplines, e.g. in forestry, conservation and agriculture. Remote sensing emerged as a key technology revealing both spatial and temporal vegetation patterns. Harnessing the ever growing streams of remote sensing data for the increasing demands on vegetation assessments and monitoring requires efficient, accurate and flexible methods for data analysis. In this respect, the use of deep learning methods is trend-setting, enabling high predictive accuracy, while learning the relevant data features independently in an end-to-end fashion. Very recently, a series of studies have demonstrated that the deep learning method of Convolutional Neural Networks (CNN) is very effective to represent spatial patterns enabling to extract a wide array of vegetation properties from remote sensing imagery. This review introduces the principles of CNN and distils why they are particularly suitable for vegetation remote sensing. The main part synthesizes current trends and developments, including considerations about spectral resolution, spatial grain, different sensors types, modes of reference data generation, sources of existing reference data, as well as CNN approaches and architectures. The literature review showed that CNN can be applied to various problems, including the detection of individual plants or the pixel-wise segmentation of vegetation classes, while numerous studies have evinced that CNN outperform shallow machine learning methods. Several studies suggest that the ability of CNN to exploit spatial patterns particularly facilitates the value of very high spatial resolution data. The modularity in the common deep learning frameworks allows a high flexibility for the adaptation of architectures, whereby especially multi-modal or multi-temporal applications can benefit. An increasing availability of techniques for visualizing features learned by CNNs will not only contribute to interpret but to learn from such models and improve our understanding of remotely sensed signals of vegetation. Although CNN has not been around for long, it seems obvious that they will usher in a new era of vegetation remote sensing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助勤恳的不悔采纳,获得10
1秒前
1秒前
2秒前
飘逸宫苴完成签到,获得积分10
2秒前
李白发布了新的文献求助10
3秒前
思源应助风中刺猬采纳,获得10
3秒前
asdfqwer发布了新的文献求助10
3秒前
gaw2008完成签到,获得积分10
3秒前
科研通AI2S应助和谐诗双采纳,获得10
3秒前
Assmpsit发布了新的文献求助10
3秒前
michaelxia发布了新的文献求助10
4秒前
6秒前
6秒前
8秒前
8秒前
典雅巧凡完成签到 ,获得积分10
9秒前
BBBBB完成签到,获得积分10
10秒前
韩熙完成签到,获得积分10
11秒前
jjjjjjjing发布了新的文献求助10
11秒前
13秒前
完美世界应助李白采纳,获得10
13秒前
独特觅翠完成签到 ,获得积分10
13秒前
风中刺猬发布了新的文献求助10
14秒前
祥梦伊飞完成签到,获得积分20
14秒前
LH发布了新的文献求助10
14秒前
爆米花应助michaelxia采纳,获得10
15秒前
Orange应助jjjjjjjing采纳,获得10
15秒前
Dr大壮完成签到,获得积分10
15秒前
风雪丽人给风雪丽人的求助进行了留言
15秒前
17秒前
17秒前
18秒前
玛格苏芮发布了新的文献求助10
18秒前
小谢完成签到 ,获得积分10
20秒前
风中刺猬完成签到,获得积分10
21秒前
22秒前
NWAFUZH发布了新的文献求助10
25秒前
聪慧勒完成签到 ,获得积分20
25秒前
26秒前
28秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142116
求助须知:如何正确求助?哪些是违规求助? 2793077
关于积分的说明 7805362
捐赠科研通 2449427
什么是DOI,文献DOI怎么找? 1303232
科研通“疑难数据库(出版商)”最低求助积分说明 626807
版权声明 601291