Is the Performance of a Periodontal Prediction Model for Identification of Diabetes affected by Participants' Characteristics?

医学 接收机工作特性 置信区间 糖尿病 社会经济地位 牙科 人口学 内科学 环境卫生 人口 社会学 内分泌学
作者
Arwa A. Talakey,Francis J. Hughes,Hani S. AlMoharib,Mansour Al‐Askar,Eduardo Bernabé
出处
期刊:Community Dental Health 卷期号:38 (1): 33-38 被引量:1
标识
DOI:10.1922/cdh_00083-2020talakey06
摘要

Objective To evaluate whether the diagnostic accuracy of a novel periodontal prediction model (PPM) for identification of adults with diabetes varies according to participants' characteristics. Basic research design The study was carried out among 250 adults attending primary care clinics in Riyadh (Saudi Arabia). The study adopted a case-control approach, where diabetes status was first ascertained, and data collection carried out afterwards using questionnaires and periodontal examinations. Variations in the performance of the PPM by demographic (sex and age), socioeconomic (education) and behavioural factors (smoking status and last dental visit) were evaluated using receiver-operating characteristic (ROC) regression. Results The PPM including 3 periodontal parameters (missing teeth, percentage of sites with pocket depth ≥6mm and mean pocket depth) had an area under the ROC curve (AUC) of 0.69 (95% Confidence Interval: 0.61-0.78), which dropped to 0.64 (95% CI: 0.53-0.75) after adjustment for covariates. Larger variations in performance were found by participants' sex, age and education, but not by smoking status or last dental visit. The PPM performed better among male (adjusted AUC: 0.76; 95% CI: 0.53 to 0.99), younger (0.67; 95% CI: 0.50 to 0.84) and less educated participants (0.76; 95% CI: 0.60, 0.92). Conclusions The diagnostic accuracy of a novel periodontal prediction model to identify individuals with diabetes varied according to participants' characteristics. This study highlights the importance of adjusting for covariates on studies of diagnostic accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助小爱采纳,获得10
1秒前
1秒前
星辰大海应助鑫xx采纳,获得10
1秒前
十七应助zhou采纳,获得10
2秒前
2秒前
wq发布了新的文献求助10
3秒前
3秒前
鱼鱼发布了新的文献求助10
4秒前
5秒前
东日发布了新的文献求助10
5秒前
6秒前
6秒前
乐正邪欢发布了新的文献求助10
6秒前
bkagyin应助lzw123456采纳,获得10
7秒前
wjx发布了新的文献求助10
7秒前
8秒前
努力发布了新的文献求助10
9秒前
FashionBoy应助neechine采纳,获得10
9秒前
坦率的乐蕊完成签到 ,获得积分10
9秒前
10秒前
10秒前
YH2完成签到,获得积分10
10秒前
盛清让发布了新的文献求助10
11秒前
h'c'z发布了新的文献求助10
11秒前
呱呱发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
12秒前
英俊的铭应助漂亮蘑菇采纳,获得10
12秒前
小爱发布了新的文献求助10
13秒前
HEIKU应助自由秋荷采纳,获得10
14秒前
心愿完成签到 ,获得积分10
14秒前
liu完成签到 ,获得积分10
15秒前
舒先生完成签到,获得积分10
15秒前
Ava应助学霸土豆采纳,获得10
15秒前
danti驳回了十七应助
15秒前
落寞访波发布了新的文献求助30
16秒前
阿酷发布了新的文献求助10
16秒前
16秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Agenda-setting and journalistic translation: The New York Times in English, Spanish and Chinese 1000
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Publish or Perish: Perceived Benefits versus Unintended Consequences, Second Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3390520
求助须知:如何正确求助?哪些是违规求助? 3002003
关于积分的说明 8801503
捐赠科研通 2688604
什么是DOI,文献DOI怎么找? 1472715
科研通“疑难数据库(出版商)”最低求助积分说明 681081
邀请新用户注册赠送积分活动 673803