Raman spectrum classification based on transfer learning by a convolutional neural network: Application to pesticide detection

学习迁移 拉曼光谱 人工智能 特征提取 卷积神经网络 计算机科学 模式识别(心理学) 机器学习 特征(语言学) 拉曼散射 人工神经网络 支持向量机 生物系统 物理 光学 哲学 生物 语言学
作者
Jiaqi Hu,Yanqiu Zou,Biao Sun,Xin‐Yao Yu,Ziyang Shang,Jie Huang,Shangzhong Jin,Pei Liang
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:265: 120366-120366 被引量:37
标识
DOI:10.1016/j.saa.2021.120366
摘要

• A transfer learning method for classify Raman spectra was proposed first time. • CNN-1D, Resnet-1D and Inception-1D have improved the accuracy of spectrum classification. • Transfer learning can improve the feature extraction capability. Pesticide detection is of tremendous importance in agriculture, and Raman spectroscopy/Surface-Enhanced Raman Scattering (SERS) has proven extremely effective as a stand-alone method to detect pesticide residues. Machine learning may be able to automate such detection, but conventional algorithms require a complete database of Raman spectra, which is not feasible. To bypass this problem, the present study describes a transfer learning method that improves the algorithm's accuracy and speed to extract features and classify Raman spectra. The transfer learning model described here was developed through the following steps: (1) the classification model was pre-trained using an open-source Raman spectroscopy database; (2) the feature extraction layer was saved after training; and (3) the training model for the Raman spectroscopy database was re-established while using self-tested pesticides and keeping the feature extraction layer unchanged. Three models were evaluated with or without transfer learning: CNN-1D, Resnet-1D, and Inception-1D, and they have improved the accuracy of spectrum classification by 6%, 2%, and 3%, with reduced training time and increased curve smoothness. These results suggest that transfer learning can improve the feature extraction capability and therefore accuracy of Raman spectroscopy models, expanding the range of Raman-based applications where transfer learning model can be used to identify the spectra of different substances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桑丘发布了新的文献求助10
刚刚
5秒前
完美世界应助yangluyao采纳,获得10
5秒前
斯文败类应助zn315315采纳,获得30
12秒前
17秒前
成就的笑南完成签到 ,获得积分10
22秒前
yangluyao发布了新的文献求助10
22秒前
24秒前
26秒前
26秒前
27秒前
柚子发布了新的文献求助10
28秒前
科研通AI2S应助聪明大米采纳,获得10
30秒前
SIDEsss发布了新的文献求助10
30秒前
长安发布了新的文献求助10
31秒前
m赤子心发布了新的文献求助10
32秒前
小乐子完成签到,获得积分10
36秒前
lanadalray完成签到,获得积分10
38秒前
44秒前
www完成签到 ,获得积分10
45秒前
46秒前
柚子完成签到 ,获得积分10
46秒前
桑丘完成签到,获得积分10
47秒前
渔舟唱晚应助无限柠檬4519采纳,获得30
52秒前
1分钟前
KK完成签到,获得积分10
1分钟前
1分钟前
机械师简发布了新的文献求助20
1分钟前
1分钟前
英俊的胜发布了新的文献求助10
1分钟前
YangSY发布了新的文献求助10
1分钟前
1分钟前
1分钟前
二六完成签到,获得积分10
1分钟前
小苏发布了新的文献求助10
1分钟前
1分钟前
勤奋幻柏完成签到,获得积分10
1分钟前
机械师简完成签到,获得积分10
1分钟前
董绮敏完成签到 ,获得积分10
1分钟前
zn315315发布了新的文献求助30
1分钟前
高分求助中
Востребованный временем 2500
The Restraining Hand: Captivity for Christ in China 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Encyclopedia of Mental Health Reference Work 300
脑血管病 300
The Unity of the Common Law 300
Eddy current canonical problems (with applications to nondestructive evaluation) 200
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3371994
求助须知:如何正确求助?哪些是违规求助? 2989966
关于积分的说明 8737802
捐赠科研通 2673233
什么是DOI,文献DOI怎么找? 1464401
科研通“疑难数据库(出版商)”最低求助积分说明 677506
邀请新用户注册赠送积分活动 668880