A novel model combining genes associated with disulfidptosis and glycolysis to predict breast cancer prognosis, molecular subtypes, and treatment response

乳腺癌 糖酵解 基因 计算生物学 肿瘤科 生物 癌症 癌症研究 内科学 生物信息学 医学 遗传学 新陈代谢
作者
Mei‐Huan Wang,Yuehua Gao,Zhen‐Dan Zhao,Huawei Zhang
出处
期刊:Environmental Toxicology [Wiley]
卷期号:39 (9): 4347-4359
标识
DOI:10.1002/tox.24329
摘要

Abstract Breast cancer (BC) is a heterogeneous malignancy with a dismal prognosis. Disulfidptosis is a novel type of regulated cell death that happens in the presence of glucose deficiency and is linked to the metabolic process of glycolysis. However, the mechanism of action of disulfidptosis and glycolysis‐related genes (DGRG) in BC, as well as their prognostic value in BC patients, remain unknown. After identifying the differentially expressed DGRG in normal and BC tissues, a number of machine learning algorithms were utilized to select essential prognostic genes to develop a model, including SLC7A11, CACNA1H, SDC1, CHST1, and TFF3. The expression characteristics of these genes were then examined using single‐cell RNA sequencing, and BC was classified into three clusters using “ConsensusClusterPlus” based on these genes. The DGRG model's median risk score can categorize BC patients into high‐risk and low‐risk groups. Furthermore, we investigated variations in clinical landscape, immunoinvasion analysis, tumor immune dysfunction and rejection (TIDE), and medication sensitivity in patients in the DGRG model's high‐ and low‐risk groups. Patients in the low‐risk group performed better on immunological and chemotherapeutic therapies and had lower TIDE scores. In conclusion, the DGRG model we developed has significant clinical application potential because it can accurately predict the prognosis of BC, TME, and pharmacological treatment responses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助超级白昼采纳,获得30
刚刚
郝宝真发布了新的文献求助10
2秒前
666完成签到,获得积分10
2秒前
香蕉觅云应助Ry采纳,获得10
2秒前
惜曦发布了新的文献求助10
2秒前
彭于晏应助科研通管家采纳,获得10
5秒前
Murphy应助科研通管家采纳,获得10
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
Jasper应助科研通管家采纳,获得10
5秒前
不配.应助科研通管家采纳,获得20
5秒前
大模型应助科研通管家采纳,获得10
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
梓泽丘墟应助科研通管家采纳,获得10
5秒前
快乐应助科研通管家采纳,获得10
5秒前
不配.应助科研通管家采纳,获得10
5秒前
科目三应助科研通管家采纳,获得10
5秒前
暮霭沉沉应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
追风少年应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
所所应助科研通管家采纳,获得10
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
6秒前
orixero应助olivia采纳,获得10
6秒前
寻桃阿玉完成签到 ,获得积分10
6秒前
wwewew完成签到,获得积分10
7秒前
梦里繁花完成签到,获得积分10
7秒前
小马甲应助wzhang采纳,获得10
8秒前
Owen应助过滤膜采纳,获得10
8秒前
机智完成签到,获得积分10
9秒前
脑洞疼应助刘小天采纳,获得10
9秒前
几酌给nixx的求助进行了留言
10秒前
10秒前
绿兔子发布了新的文献求助20
11秒前
11秒前
机智发布了新的文献求助10
12秒前
时尚语梦完成签到 ,获得积分10
12秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162727
求助须知:如何正确求助?哪些是违规求助? 2813601
关于积分的说明 7901404
捐赠科研通 2473189
什么是DOI,文献DOI怎么找? 1316684
科研通“疑难数据库(出版商)”最低求助积分说明 631482
版权声明 602175