亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Non‐parametric multivariate analyses of changes in community structure

排序 秩(图论) 多元统计 样品(材料) 一致性(知识库) 相似性(几何) 群落结构 代表(政治) 领域(数学) 生态学 聚类分析 计算机科学 数学 生物 人工智能 机器学习 图像(数学) 组合数学 化学 政治 法学 纯数学 色谱法 政治学
作者
K.R. Clarke
出处
期刊:Australian journal of ecology [Wiley]
卷期号:18 (1): 117-143 被引量:12081
标识
DOI:10.1111/j.1442-9993.1993.tb00438.x
摘要

Abstract In the early 1980s, a strategy for graphical representation of multivariate (multi‐species) abundance data was introduced into marine ecology by, among others, Field, et al. (1982). A decade on, it is instructive to: (i) identify which elements of this often‐quoted strategy have proved most useful in practical assessment of community change resulting from pollution impact; and (ii) ask to what extent evolution of techniques in the intervening years has added self‐consistency and comprehensiveness to the approach. The pivotal concept has proved to be that of a biologically‐relevant definition of similarity of two samples, and its utilization mainly in simple rank form, for example ‘sample A is more similar to sample B than it is to sample C’. Statistical assumptions about the data are thus minimized and the resulting non‐parametric techniques will be of very general applicability. From such a starting point, a unified framework needs to encompass: (i) the display of community patterns through clustering and ordination of samples; (ii) identification of species principally responsible for determining sample groupings; (iii) statistical tests for differences in space and time (multivariate analogues of analysis of variance, based on rank similarities); and (iv) the linking of community differences to patterns in the physical and chemical environment (the latter also dictated by rank similarities between samples). Techniques are described that bring such a framework into place, and areas in which problems remain are identified. Accumulated practical experience with these methods is discussed, in particular applications to marine benthos, and it is concluded that they have much to offer practitioners of environmental impact studies on communities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
VDC完成签到,获得积分0
8秒前
基金中中中完成签到,获得积分10
10秒前
14秒前
年轻的冰海完成签到,获得积分10
15秒前
上善若水发布了新的文献求助30
17秒前
22秒前
26秒前
JOJO发布了新的文献求助10
27秒前
爆米花应助开朗的从波采纳,获得10
27秒前
30秒前
32秒前
龚幻梦发布了新的文献求助10
33秒前
esyncoms发布了新的文献求助10
33秒前
wanci应助科研通管家采纳,获得10
33秒前
Lucas应助上善若水采纳,获得10
39秒前
Q_Q完成签到,获得积分10
48秒前
49秒前
JOJO完成签到,获得积分10
49秒前
54秒前
林狗发布了新的文献求助10
57秒前
田様应助坚强的严青采纳,获得10
59秒前
59秒前
1分钟前
1分钟前
852应助调皮冷风采纳,获得10
1分钟前
椒盐完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
薄衫完成签到,获得积分10
1分钟前
kbcbwb2002完成签到,获得积分10
1分钟前
1分钟前
羽羽完成签到 ,获得积分10
1分钟前
1分钟前
椒盐关注了科研通微信公众号
1分钟前
薄衫发布了新的文献求助10
1分钟前
柯萝完成签到,获得积分10
1分钟前
倦鸟余花发布了新的文献求助10
2分钟前
2分钟前
笨笨盼易发布了新的文献求助10
2分钟前
2分钟前
高分求助中
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3463596
求助须知:如何正确求助?哪些是违规求助? 3057019
关于积分的说明 9054942
捐赠科研通 2746921
什么是DOI,文献DOI怎么找? 1507154
科研通“疑难数据库(出版商)”最低求助积分说明 696405
邀请新用户注册赠送积分活动 695916