Secondary brain injury following intracerebral hemorrhage (ICH) significantly reduces patients’ quality of life due to impaired neurological function. Lipid droplets are implicated in secondary brain injury in various central nervous system diseases. Thus, the role and mechanisms of lipid droplets in secondary brain injury post-ICH require further investigation. We analyzed the changes of genes related to lipid metabolism in brain tissue of ICH mice. Lipid droplets around the hematoma were detected by BODIPY staining. Mice received intraperitoneal injections of Triacsin C (10 mg/kg, once daily) after ICH. Subsequently, neuronal damage was evaluated using TUNEL and Nissl staining, and ethological tests assessed sensorimotor function. After ICH, notable changes occurred in lipid metabolism pathways and genes (Plin2, Ucp2, Apoe), and a large number of lipid droplets accumulated around the hematoma. Triacsin C significantly reduced lipid droplets deposition, decreased neuronal damage, and improved sensory and motor functions. Peripheral administration to prevent lipid droplets formation can greatly reduce nerve damage and enhance nerve function. Our findings indicate that targeting lipid droplets could be a promising treatment for ICH.