sEMG-Based Upper Limb Movement Classifier: Current Scenario and Upcoming Challenges

计算机科学 分类器(UML) 人工智能 鉴定(生物学) 机器学习 生物 植物
作者
Maurício Cagliari Tosin,Juliano Costa Machado,Alexandre Balbinot
出处
期刊:Journal of Artificial Intelligence Research [AI Access Foundation]
卷期号:75: 83-127 被引量:6
标识
DOI:10.1613/jair.1.13999
摘要

Despite achieving accuracies higher than 90% on recognizing upper-limb movements through sEMG (surface Electromyography) signal with the state of art classifiers in the laboratory environment, there are still issues to be addressed for a myo-controlled prosthesis achieve similar performance in real environment conditions. Thereby, the main goal of this review is to expose the latest researches in terms of strategies in each block of the system, giving a global view of the current state of academic research. A systematic review was conducted, and the retrieved papers were organized according to the system step related to the proposed method. Then, for each stage of the upper limb motion recognition system, the works were described and compared in terms of strategy, methodology and issue addressed. An additional section was destined for the description of works related to signal contamination that is often neglected in reviews focused on sEMG based motion classifiers. Therefore, this section is the main contribution of this paper. Deep learning methods are a current trend for classification stage, providing strategies based on time-series and transfer learning to address the issues related to limb position, temporal/inter-subject variation, and electrode displacement. Despite the promising strategies presented for contaminant detection, identification, and removal, there are still some factors to be considered, such as the occurrence of simultaneous contaminants. This review exposes the current scenario of the movement classification system, providing valuable information for new researchers and guiding future works towards myo-controlled devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
531完成签到,获得积分10
刚刚
秋水发布了新的文献求助80
1秒前
妙蛙种子耶给粥粥的求助进行了留言
1秒前
顾长生发布了新的文献求助150
2秒前
2秒前
烟花应助黄澄澄采纳,获得10
5秒前
5秒前
9秒前
祈愿完成签到,获得积分10
9秒前
炙热水风完成签到,获得积分20
11秒前
lxy发布了新的文献求助10
11秒前
科研通AI5应助黑米粥采纳,获得10
11秒前
科研通AI5应助黑米粥采纳,获得10
11秒前
非而者厚应助黑米粥采纳,获得30
11秒前
科研通AI5应助黑米粥采纳,获得10
11秒前
科研通AI5应助黑米粥采纳,获得10
11秒前
科研通AI5应助黑米粥采纳,获得10
11秒前
科研通AI5应助黑米粥采纳,获得10
11秒前
11秒前
汉堡包应助星禾吾采纳,获得10
12秒前
13秒前
梁子奥里给完成签到,获得积分10
14秒前
罗备完成签到,获得积分10
14秒前
内向芒果完成签到,获得积分10
17秒前
找寻四氢叶酸完成签到,获得积分10
17秒前
壮观问寒发布了新的文献求助10
19秒前
所所应助Skyyeats采纳,获得10
19秒前
HANGOVERG发布了新的文献求助10
19秒前
共享精神应助lmm采纳,获得10
19秒前
19秒前
852应助lxy采纳,获得10
22秒前
怕黑傲珊完成签到,获得积分20
24秒前
炙热水风发布了新的文献求助30
25秒前
单从蓉发布了新的文献求助10
26秒前
十三发布了新的文献求助20
26秒前
星空舒完成签到,获得积分10
26秒前
英俊的铭应助星禾吾采纳,获得10
27秒前
28秒前
29秒前
壮观问寒完成签到,获得积分10
29秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 890
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3760734
求助须知:如何正确求助?哪些是违规求助? 3304449
关于积分的说明 10130081
捐赠科研通 3018451
什么是DOI,文献DOI怎么找? 1657621
邀请新用户注册赠送积分活动 791613
科研通“疑难数据库(出版商)”最低求助积分说明 754447