sEMG-Based Upper Limb Movement Classifier: Current Scenario and Upcoming Challenges

计算机科学 分类器(UML) 人工智能 鉴定(生物学) 机器学习 植物 生物
作者
Maurício Cagliari Tosin,Juliano Costa Machado,Alexandre Balbinot
出处
期刊:Journal of Artificial Intelligence Research 卷期号:75: 83-127 被引量:6
标识
DOI:10.1613/jair.1.13999
摘要

Despite achieving accuracies higher than 90% on recognizing upper-limb movements through sEMG (surface Electromyography) signal with the state of art classifiers in the laboratory environment, there are still issues to be addressed for a myo-controlled prosthesis achieve similar performance in real environment conditions. Thereby, the main goal of this review is to expose the latest researches in terms of strategies in each block of the system, giving a global view of the current state of academic research. A systematic review was conducted, and the retrieved papers were organized according to the system step related to the proposed method. Then, for each stage of the upper limb motion recognition system, the works were described and compared in terms of strategy, methodology and issue addressed. An additional section was destined for the description of works related to signal contamination that is often neglected in reviews focused on sEMG based motion classifiers. Therefore, this section is the main contribution of this paper. Deep learning methods are a current trend for classification stage, providing strategies based on time-series and transfer learning to address the issues related to limb position, temporal/inter-subject variation, and electrode displacement. Despite the promising strategies presented for contaminant detection, identification, and removal, there are still some factors to be considered, such as the occurrence of simultaneous contaminants. This review exposes the current scenario of the movement classification system, providing valuable information for new researchers and guiding future works towards myo-controlled devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
程程完成签到,获得积分10
刚刚
yxdeng发布了新的文献求助10
刚刚
摘星012完成签到 ,获得积分10
1秒前
苻沛蓝完成签到,获得积分10
1秒前
刚刚好完成签到,获得积分10
3秒前
Lucas应助易寒采纳,获得10
3秒前
guozeyi完成签到,获得积分20
3秒前
黑马发布了新的文献求助10
3秒前
jovi完成签到,获得积分10
4秒前
crowd_lpy发布了新的文献求助10
4秒前
小鹿斑斑比完成签到,获得积分10
4秒前
迅速的月光完成签到 ,获得积分10
4秒前
5秒前
Ohoooo完成签到,获得积分10
5秒前
CipherSage应助沉默老四采纳,获得10
5秒前
6秒前
6秒前
桐桐应助来日方长采纳,获得10
6秒前
7秒前
guozeyi发布了新的文献求助20
7秒前
lyp完成签到 ,获得积分10
7秒前
8秒前
是草莓完成签到,获得积分10
8秒前
8秒前
小梦完成签到,获得积分10
8秒前
luka完成签到,获得积分10
9秒前
9秒前
彦子完成签到 ,获得积分10
9秒前
9秒前
9秒前
酷炫的水蓝完成签到,获得积分10
9秒前
泰乐发布了新的文献求助10
10秒前
fushuai1996完成签到,获得积分10
10秒前
10秒前
Orange应助zjy123采纳,获得10
11秒前
12秒前
大气尔安发布了新的文献求助30
12秒前
12秒前
cyndi完成签到 ,获得积分10
12秒前
123456完成签到 ,获得积分10
12秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151113
求助须知:如何正确求助?哪些是违规求助? 2802591
关于积分的说明 7848835
捐赠科研通 2459966
什么是DOI,文献DOI怎么找? 1309420
科研通“疑难数据库(出版商)”最低求助积分说明 628897
版权声明 601757