脉络膜新生血管
PI3K/AKT/mTOR通路
巨噬细胞极化
免疫印迹
蛋白激酶B
巨噬细胞
化学
福克斯O1
分子生物学
癌症研究
医学
视网膜
生物
细胞凋亡
生物化学
体外
基因
作者
Yamei Zhou,Jia Zeng,Yuanyuan Tu,Lele Li,Shu Du,Linling Zhu,Xiaomin Cang,Jiesheng Lu,Manhui Zhu,Xiaojuan Liu
摘要
Purpose: This study examined the role of the CSF1/CSF1Raxis in the crosstalk between choroidal vascular endothelial cells (CVECs) and macrophages during the formation of choroidal neovascularization (CNV). Methods: Quantitative reverse transcriptase (QRT)-PCR, Western blot and ELISA measured the production and release of CSF1 from human choroidal vascular endothelial cells (HCVECs) under hypoxic conditions. Western blot detected CSF1 released from HCVECs under hypoxic conditions that activated the PI3K/AKT/FOXO1 axis in human macrophages via binding to CSF1R. Transwell migration assay, qRT-PCR, and Western blot detected the effect of CSF1 released from HCVECs on macrophage migration and M2 polarization via the CSF1R/PI3K/AKT/FOXO1 pathway. Incorporation of 5-ethynyl-20-deoxyuridine, transwell migration, and tube formation assays detected the effects of CSF1/CSF1R on the behaviors of HCVECs. Fundus fluorescein angiography (FFA), indocyanine green angiography (ICGA), and immunofluorescence detected the effect of blockade of CSF1/CSF1R on mouse laser-induced CNV. Color fundus photograph, ICGA, and FFA detected CNV lesions in neovascular AMD (nAMD) patients. ELISA detected CSF1 and CSF1R in the aqueous humor of age-related cataract and nAMD patients. Results: CSF1 released from HCVECs under hypoxic conditions activated the PI3K/AKT/FOXO1 axis in human macrophages via binding to CSF1R, promoting macrophage migration and M2 polarization via up-regulation of the CSF1R/PI3K/AKT/FOXO1 pathway. Human macrophages promoted the proliferation, migration, and tube formation of HCVECs in a CSF1/CSFR1-dependent manner under hypoxic conditions. CSF1/CSF1R blockade ameliorated the formation of mouse laser-induced CNV. CSF1 and CSF1R were increased in the aqueous humor of nAMD patients. Conclusions: Our results affirmed the crucial role of CSF1/CSF1R in boosting the formation of CNV and offered potential molecular targets for the treatment of nAMD.
科研通智能强力驱动
Strongly Powered by AbleSci AI