Impact of using sinogram domain data in the super‐resolution of CT images on diagnostic information

人工智能 计算机科学 判别式 模式识别(心理学) 卷积神经网络 公制(单位) 图像质量 相似性(几何) 任务(项目管理) 计算机视觉 图像(数学) 运营管理 经济 管理
作者
Minwoo Yu,Minah Han,Jongduk Baek
出处
期刊:Medical Physics [Wiley]
卷期号:51 (4): 2817-2833
标识
DOI:10.1002/mp.16807
摘要

Abstract Background In recent times, deep‐learning‐based super‐resolution (DL‐SR) techniques for computed tomography (CT) images have shown outstanding results in terms of full‐reference image quality (FR‐IQ) metrics (e.g., root mean square error and structural similarity index metric), which assesses IQ by measuring its similarity to the high‐resolution (HR) image. In addition, IQ can be evaluated via task‐based IQ (Task‐IQ) metrics that evaluate the ability to perform specific tasks. Ironically, most proposed image domain‐based SR techniques are not possible to improve a Task‐IQ metric, which assesses the amount of information related to diagnosis. Purpose In the case of CT imaging systems, sinogram domain data can be utilized for SR techniques. Therefore, this study aims to investigate the impact of utilizing sinogram domain data on diagnostic information restoration ability. Methods We evaluated three DL‐SR techniques: using image domain data (Image‐SR), using sinogram domain data (Sinogram‐SR), and using sinogram as well as image domain data (Dual‐SR). For Task‐IQ evaluation, the Rayleigh discrimination task was used to evaluate diagnostic ability by focusing on the resolving power aspect, and an ideal observer (IO) can be used to perform the task. In this study, we used a convolutional neural network (CNN)‐based IO that approximates the IO performance. We compared the IO performances of the SR techniques according to the data domain to evaluate the discriminative information restoration ability. Results Overall, the low‐resolution (LR) and SR exhibit lower IO performances compared with that of HR owing to their degraded discriminative information when detector binning is used. Next, between the SR techniques, Image‐SR does not show superior IO performances compared to the LR image, but Sinogram‐SR and Dual‐SR show superior IO performances than the LR image. Furthermore, in Sinogram‐SR, we confirm that FR‐IQ and IO performance are positively correlated. These observations demonstrate that sinogram domain upsampling improves the representation ability for discriminative information in the image domain compared to the LR and Image‐SR. Conclusions Unlike Image‐SR, Sinogram‐SR can improve the amount of discriminative information present in the image domain. This demonstrates that to improve the amount of discriminative information on the resolving power aspect, it is necessary to employ sinogram domain processing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
YufeiLiu发布了新的文献求助10
刚刚
浅池星完成签到 ,获得积分10
1秒前
2秒前
3秒前
LYSM应助风中的怀绿采纳,获得10
4秒前
zlw完成签到,获得积分10
4秒前
4秒前
充电宝应助miao采纳,获得30
4秒前
6秒前
7秒前
快乐天荷完成签到,获得积分10
8秒前
模糊中正发布了新的文献求助10
8秒前
卡皮巴拉发布了新的文献求助10
8秒前
无限电话应助wjz采纳,获得10
8秒前
yc发布了新的文献求助10
9秒前
研友_VZG7GZ应助huanhuan采纳,获得10
9秒前
霖木木发布了新的文献求助10
9秒前
从容的迎蓉完成签到,获得积分10
10秒前
木安完成签到,获得积分10
10秒前
Lyanph完成签到 ,获得积分10
11秒前
刘坦苇发布了新的文献求助10
11秒前
12秒前
梅子发布了新的文献求助10
13秒前
14秒前
14秒前
witting发布了新的文献求助10
15秒前
英俊的铭应助易今采纳,获得10
15秒前
15秒前
yc完成签到,获得积分20
15秒前
dsa2815发布了新的文献求助30
15秒前
Lucas应助霖木木采纳,获得10
16秒前
FashionBoy应助dong采纳,获得10
16秒前
16秒前
16秒前
ymr完成签到 ,获得积分10
16秒前
16秒前
18秒前
风中的怀绿完成签到,获得积分10
18秒前
Dr.发布了新的文献求助10
18秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459353
求助须知:如何正确求助?哪些是违规求助? 3053819
关于积分的说明 9038835
捐赠科研通 2743182
什么是DOI,文献DOI怎么找? 1504682
科研通“疑难数据库(出版商)”最低求助积分说明 695368
邀请新用户注册赠送积分活动 694664