Mapping soil arsenic pollution at a brownfield site using satellite hyperspectral imagery and machine learning

高光谱成像 VNIR公司 环境科学 污染 采样(信号处理) 遥感 土壤科学 计算机科学 地质学 化学 生态学 计算机视觉 生物 滤波器(信号处理) 有机化学
作者
Xiyue Jia,Deyi Hou
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:857: 159387-159387 被引量:9
标识
DOI:10.1016/j.scitotenv.2022.159387
摘要

Heavy metal contamination is ubiquitous in brownfields. Traditional site investigation employs geostatistical interpolation methods (GIMs) to predict the distribution of soil pollutants after soil sampling and chemical analysis. However, the heterogeneity of soil pollution in brownfields makes the assumptions of GIMs no longer valid and further undermines the accuracy of soil investigation. In the present study, a satellite hyperspectral image processing and machine learning method was developed to map arsenic pollution at a brownfield site. To eliminate the noise caused by atmospheric factors and increase the efficiency of spectral data, 1.3 million spectral indexes (SIs) were constructed and 1171 of them were selected due to their high correlations with soil arsenic. Five machine learning methods, i.e., Random forest (RF), ExtraTrees, Adaptive Boosting, Extreme Gradient Trees, and Gradient Descent Boosting Trees (GDB) were built to predict soil arsenic. The RF method was found to render the best performance (r = 0.78), reducing 30 % of prediction errors compared with traditional GIMs. RF also maintained a relatively higher level of accuracy (r = 0.56) when the sampling grids increased to 100 m, which was higher than that of GIMs under a 50 m sampling grid (r = 0.42), revealing that the proposed method can provide more accurate results with fewer sampling points, namely less investigation cost. It was indicated that the second derivate was the most efficient preprocessing method to remove spectral noise and normalized difference (ND) was the most reliable spectral index construction strategy. Based on uncertainty analysis, the heterogeneity of soil arsenic distribution was considered the most influential factor causing prediction errors. This study demonstrates that machine learning based on satellite visible and near-infrared reflectance spectroscopy (VNIR) is a promising approach to map soil arsenic contamination at brownfield sites with high accuracy and low cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ihuhiu发布了新的文献求助10
1秒前
舒芙蕾发布了新的文献求助10
1秒前
3秒前
领导范儿应助香芋派采纳,获得10
3秒前
刘坦苇发布了新的文献求助10
4秒前
5秒前
YufeiLiu发布了新的文献求助10
5秒前
浅池星完成签到 ,获得积分10
6秒前
7秒前
8秒前
LYSM应助风中的怀绿采纳,获得10
9秒前
zlw完成签到,获得积分10
9秒前
9秒前
充电宝应助miao采纳,获得30
9秒前
11秒前
11秒前
快乐天荷完成签到,获得积分10
12秒前
模糊中正发布了新的文献求助10
12秒前
卡皮巴拉发布了新的文献求助10
12秒前
无限电话应助wjz采纳,获得10
12秒前
yc发布了新的文献求助10
13秒前
研友_VZG7GZ应助huanhuan采纳,获得10
13秒前
霖木木发布了新的文献求助10
13秒前
从容的迎蓉完成签到,获得积分10
14秒前
木安完成签到,获得积分10
14秒前
Lyanph完成签到 ,获得积分10
15秒前
刘坦苇发布了新的文献求助10
15秒前
16秒前
梅子发布了新的文献求助10
17秒前
18秒前
18秒前
witting发布了新的文献求助10
19秒前
英俊的铭应助易今采纳,获得10
19秒前
19秒前
yc完成签到,获得积分20
19秒前
dsa2815发布了新的文献求助30
19秒前
Lucas应助霖木木采纳,获得10
20秒前
FashionBoy应助dong采纳,获得10
20秒前
20秒前
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459353
求助须知:如何正确求助?哪些是违规求助? 3053819
关于积分的说明 9038835
捐赠科研通 2743182
什么是DOI,文献DOI怎么找? 1504682
科研通“疑难数据库(出版商)”最低求助积分说明 695368
邀请新用户注册赠送积分活动 694664