A Nonergodic Ground‐Motion Model for California with Spatially Varying Coefficients

地震动 运动(物理) 数学 统计物理学 地质学 数学分析 几何学 物理 经典力学 地震学
作者
Niels Landwehr,Nicolas Kuehn,Tobias Scheffer,Norman A. Abrahamson
出处
期刊:Bulletin of the Seismological Society of America [Seismological Society of America]
卷期号:106 (6): 2574-2583 被引量:112
标识
DOI:10.1785/0120160118
摘要

Traditional probabilistic seismic‐hazard analysis as well as the estimation of ground‐motion models (GMMs) is based on the ergodic assumption, which means that the distribution of ground motions over time at a given site is the same as their spatial distribution over all sites for the same magnitude, distance, and site condition. With a large increase in the number of recorded ground‐motion data, there are now repeated observations at given sites and from multiple earthquakes in small regions, so that assumption can be relaxed. We use a novel approach to develop a nonergodic GMM, which is cast as a varying‐coefficient model (VCM). In this model, the coefficients are allowed to vary by geographical location, which makes it possible to incorporate effects of spatially varying source, path, and site conditions. Hence, a separate set of coefficients is estimated for each source and site coordinate in the data set. The coefficients are constrained to be similar for spatially nearby locations. This is achieved by placing a Gaussian process prior on the coefficients. The amount of correlation is determined by the data. The spatial correlation structure of the model allows one to extrapolate the varying coefficients to a new location and trace the corresponding uncertainties. The approach is illustrated with the Next Generation Attenuation‐West2 data set, using only Californian records. The VCM outperforms a traditionally estimated GMM in terms of generalization error and leads to a reduction in the aleatory standard deviation by ∼40%, which has important implications for seismic‐hazard calculations. The scaling of the model with respect to its predictor variables such as magnitude and distance is physically plausible. The epistemic uncertainty associated with the predicted ground motions is small in places where events or stations are close and large where data are sparse. Online Material: Maps showing the spatially varying coefficients across California and tables of correlation functions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助缺粥采纳,获得10
1秒前
2秒前
4秒前
勾勾1991完成签到,获得积分10
5秒前
5秒前
科研通AI2S应助大气亦巧采纳,获得10
5秒前
6秒前
汉堡包应助wade采纳,获得10
6秒前
张学习完成签到,获得积分10
7秒前
蔡军完成签到 ,获得积分10
7秒前
白桃战士完成签到,获得积分10
7秒前
zzz完成签到,获得积分10
7秒前
8秒前
端庄的冬天完成签到,获得积分10
8秒前
小栩完成签到 ,获得积分10
9秒前
啦啦啦啦啦啦啦啦完成签到 ,获得积分10
9秒前
曲沛萍发布了新的文献求助10
9秒前
宁阿霜发布了新的文献求助20
10秒前
SOO应助研友_5476B5采纳,获得10
10秒前
夏风完成签到 ,获得积分10
11秒前
隐形曼青应助萧小五采纳,获得10
11秒前
Jiawei完成签到,获得积分10
11秒前
nieanicole发布了新的文献求助10
11秒前
小橙同学完成签到 ,获得积分10
11秒前
Ava应助yukinade采纳,获得10
12秒前
爆米花应助hahhh7采纳,获得10
12秒前
12秒前
深情安青应助leodu采纳,获得10
13秒前
13秒前
14秒前
开心完成签到,获得积分10
15秒前
Never stall完成签到,获得积分10
15秒前
15秒前
15秒前
甜美的雁开完成签到,获得积分20
16秒前
猫归四海关注了科研通微信公众号
16秒前
CipherSage应助vinecho采纳,获得30
16秒前
16秒前
大气亦巧完成签到,获得积分10
17秒前
ding应助2025tangtang采纳,获得10
17秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987267
求助须知:如何正确求助?哪些是违规求助? 3529546
关于积分的说明 11245872
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804089
邀请新用户注册赠送积分活动 881339
科研通“疑难数据库(出版商)”最低求助积分说明 808653