A Nonergodic Ground‐Motion Model for California with Spatially Varying Coefficients

地震动 运动(物理) 数学 统计物理学 地质学 数学分析 几何学 物理 经典力学 地震学
作者
Niels Landwehr,Nicolas Kuehn,Tobias Scheffer,Norman A. Abrahamson
出处
期刊:Bulletin of the Seismological Society of America [Seismological Society]
卷期号:106 (6): 2574-2583 被引量:112
标识
DOI:10.1785/0120160118
摘要

Traditional probabilistic seismic‐hazard analysis as well as the estimation of ground‐motion models (GMMs) is based on the ergodic assumption, which means that the distribution of ground motions over time at a given site is the same as their spatial distribution over all sites for the same magnitude, distance, and site condition. With a large increase in the number of recorded ground‐motion data, there are now repeated observations at given sites and from multiple earthquakes in small regions, so that assumption can be relaxed. We use a novel approach to develop a nonergodic GMM, which is cast as a varying‐coefficient model (VCM). In this model, the coefficients are allowed to vary by geographical location, which makes it possible to incorporate effects of spatially varying source, path, and site conditions. Hence, a separate set of coefficients is estimated for each source and site coordinate in the data set. The coefficients are constrained to be similar for spatially nearby locations. This is achieved by placing a Gaussian process prior on the coefficients. The amount of correlation is determined by the data. The spatial correlation structure of the model allows one to extrapolate the varying coefficients to a new location and trace the corresponding uncertainties. The approach is illustrated with the Next Generation Attenuation‐West2 data set, using only Californian records. The VCM outperforms a traditionally estimated GMM in terms of generalization error and leads to a reduction in the aleatory standard deviation by ∼40%, which has important implications for seismic‐hazard calculations. The scaling of the model with respect to its predictor variables such as magnitude and distance is physically plausible. The epistemic uncertainty associated with the predicted ground motions is small in places where events or stations are close and large where data are sparse. Online Material: Maps showing the spatially varying coefficients across California and tables of correlation functions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助kaka采纳,获得10
刚刚
晨珂发布了新的文献求助10
刚刚
彭于晏应助Schenb采纳,获得30
1秒前
静静发布了新的文献求助10
1秒前
something完成签到,获得积分10
1秒前
liu完成签到,获得积分10
2秒前
猪猪hero发布了新的文献求助10
2秒前
郑朗逸完成签到,获得积分10
2秒前
KY发布了新的文献求助10
3秒前
远道完成签到,获得积分10
3秒前
3秒前
归尘应助稳重乐双采纳,获得30
5秒前
可爱的函函应助温童采纳,获得10
5秒前
5秒前
安谢发布了新的文献求助10
5秒前
6秒前
6秒前
smoon发布了新的文献求助10
8秒前
8秒前
9秒前
Caism完成签到,获得积分10
9秒前
lalala发布了新的文献求助10
10秒前
10秒前
wangzhenghua发布了新的文献求助10
10秒前
顺心灵雁发布了新的文献求助10
10秒前
上官若男应助KY采纳,获得10
12秒前
阿飞完成签到,获得积分10
12秒前
椰子完成签到,获得积分10
12秒前
12秒前
辛勤云朵完成签到,获得积分10
14秒前
汽水味发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
888发布了新的文献求助30
15秒前
FashionBoy应助椰子采纳,获得10
15秒前
小树枝发布了新的文献求助10
15秒前
小蘑菇应助宁天问采纳,获得10
16秒前
陶醉雪青发布了新的文献求助10
16秒前
Jasper应助Kelly采纳,获得10
17秒前
舒懿铭发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424743
求助须知:如何正确求助?哪些是违规求助? 4539089
关于积分的说明 14165404
捐赠科研通 4456188
什么是DOI,文献DOI怎么找? 2444042
邀请新用户注册赠送积分活动 1435140
关于科研通互助平台的介绍 1412483