A Nonergodic Ground‐Motion Model for California with Spatially Varying Coefficients

地震动 运动(物理) 数学 统计物理学 地质学 数学分析 几何学 物理 经典力学 地震学
作者
Niels Landwehr,Nicolas Kuehn,Tobias Scheffer,Norman A. Abrahamson
出处
期刊:Bulletin of the Seismological Society of America [Seismological Society]
卷期号:106 (6): 2574-2583 被引量:112
标识
DOI:10.1785/0120160118
摘要

Traditional probabilistic seismic‐hazard analysis as well as the estimation of ground‐motion models (GMMs) is based on the ergodic assumption, which means that the distribution of ground motions over time at a given site is the same as their spatial distribution over all sites for the same magnitude, distance, and site condition. With a large increase in the number of recorded ground‐motion data, there are now repeated observations at given sites and from multiple earthquakes in small regions, so that assumption can be relaxed. We use a novel approach to develop a nonergodic GMM, which is cast as a varying‐coefficient model (VCM). In this model, the coefficients are allowed to vary by geographical location, which makes it possible to incorporate effects of spatially varying source, path, and site conditions. Hence, a separate set of coefficients is estimated for each source and site coordinate in the data set. The coefficients are constrained to be similar for spatially nearby locations. This is achieved by placing a Gaussian process prior on the coefficients. The amount of correlation is determined by the data. The spatial correlation structure of the model allows one to extrapolate the varying coefficients to a new location and trace the corresponding uncertainties. The approach is illustrated with the Next Generation Attenuation‐West2 data set, using only Californian records. The VCM outperforms a traditionally estimated GMM in terms of generalization error and leads to a reduction in the aleatory standard deviation by ∼40%, which has important implications for seismic‐hazard calculations. The scaling of the model with respect to its predictor variables such as magnitude and distance is physically plausible. The epistemic uncertainty associated with the predicted ground motions is small in places where events or stations are close and large where data are sparse. Online Material: Maps showing the spatially varying coefficients across California and tables of correlation functions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
执着黑米完成签到 ,获得积分10
1秒前
1秒前
浪费完成签到 ,获得积分10
1秒前
2秒前
嘎嘎完成签到,获得积分20
2秒前
Jackson_Cai完成签到,获得积分10
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
天天下文献完成签到 ,获得积分10
4秒前
4秒前
4秒前
温暖书雪完成签到,获得积分10
4秒前
FunnyL发布了新的文献求助10
4秒前
嘟嘟发布了新的文献求助10
5秒前
orixero应助晕倒一下采纳,获得10
5秒前
英俊水池完成签到,获得积分10
5秒前
溪水完成签到 ,获得积分10
5秒前
飞蚁完成签到,获得积分10
5秒前
YY完成签到,获得积分10
5秒前
6秒前
7秒前
chengli完成签到,获得积分10
7秒前
岁岁完成签到 ,获得积分10
7秒前
tangyong完成签到,获得积分10
8秒前
Japrin完成签到,获得积分10
8秒前
星辰大海完成签到,获得积分10
9秒前
charon完成签到 ,获得积分10
9秒前
大魁完成签到,获得积分10
9秒前
心悦SCI完成签到,获得积分10
9秒前
白日幻想家完成签到 ,获得积分10
9秒前
stephanine完成签到 ,获得积分10
10秒前
fan051500完成签到,获得积分10
10秒前
Queena完成签到,获得积分10
11秒前
woodword发布了新的文献求助10
11秒前
SCO完成签到,获得积分10
11秒前
zlf发布了新的文献求助10
11秒前
偏遇完成签到,获得积分10
11秒前
11秒前
雨中客完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482803
求助须知:如何正确求助?哪些是违规求助? 4583511
关于积分的说明 14390213
捐赠科研通 4512809
什么是DOI,文献DOI怎么找? 2473255
邀请新用户注册赠送积分活动 1459255
关于科研通互助平台的介绍 1432883