原人参二醇
人参皂甙
蜜环菌
化学
水解
人参
立体化学
生物化学
菌丝体
生物
植物
医学
病理
替代医学
作者
J. S. Upadhyaya,Min-Sun Yoon,Min‐Ji Kim,Nam-Soo Ryu,Young-Eun Song,Young-Hoi Kim,Myung-Kon Kim
出处
期刊:AMB Express
[Springer Nature]
日期:2016-11-11
卷期号:6 (1)
被引量:13
标识
DOI:10.1186/s13568-016-0277-x
摘要
Ginsenosides are the principal compounds responsible for the pharmacological effects and health benefits of Panax ginseng root. Among protopanaxadiol (PPD)-type ginsenosides, minor ginsenosides such as ginsenoside (G)-F2, G-Rh2, compound (C)-Mc1, C-Mc, C-O, C-Y, and C-K are known to be more pharmacologically active constituents than major ginsenosides such as G-Rb1, G-Rb2, G-Rc, and G-Rd. A novel ginsenoside Rc-hydrolyzing β-glucosidase (BG-1) from Armillaria mellea mycelia was purified as a single protein band with molecular weight of 121.5 kDa on SDS-PAGE and a specific activity of 17.9 U mg−1 protein. BG-1 concurrently hydrolyzed α-(1 → 6)-arabinofuranosidic linkage at the C-20 site or outer β-(1 → 2)-glucosidic linkage at the C-3 site of G-Rc to produce G-Rd and C-Mc1, respectively. The enzyme also hydrolyzed outer and inner glucosidic linkages at the C-3 site of G-Rd to produce C-K via G-F2, and inner glucosidic linkage at the C-3 site of C-Mc1 to produce C-Mc. C-Mc was also slowly hydrolyzed α-(1 → 6)-arabinofuranosidic linkage at the C-20 site to produce C-K with reaction time prolongation. Finally, the pathways for formation of C-Mc and C-K from G-Rc by BG-1 were G-Rc → C-Mc1 → C-Mc and G-Rc → G-Rd → G-F2 → C-K, respectively. The optimum reaction conditions for C-Mc and C-K formation from G-Rc by BG-1 were pH 4.0–4.5, temperature 45–60 °C, and reaction time 72–96 h. This is the first report of efficient production of minor ginsenosides, C-Mc and C-K from G-Rc by β-glucosidase purified from A. mellea mycelia.
科研通智能强力驱动
Strongly Powered by AbleSci AI