已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Damage Detection of Bridge Structures Under Vehicle Loads Using Moving-Window Correlation Coefficient of Signals with Limited Sensors

相关系数 噪音(视频) 滑动窗口协议 计算机科学 声学 结构工程 窗口(计算) 工程类 人工智能 物理 操作系统 图像(数学) 机器学习
作者
Yifeng Zhang,Jinsong Zhu
出处
期刊:International Journal of Structural Stability and Dynamics [World Scientific]
卷期号:22 (09) 被引量:2
标识
DOI:10.1142/s021945542250105x
摘要

Based on the moving-window correlation coefficient of signals, a damage detection method is proposed for bridge structures. The signals collected by two sensors during the vehicle crossing the bridge are intercepted as windowed pair time series, and the damage index is defined based on the correlation of them. The damage vector is composed of damage indices from the beginning to end according to the moving direction of the window, and the damage location can be determined by the peak information of all the damage vectors which are obtained by different sensor pairs. First, the damage detection method and corresponding detection steps are introduced. Then, the proposed method is validated by numerical simulation, and the influence of moving window length, moving step, the number of sensors, deviation of vehicle parameters and road-surface roughness on damage localization are discussed, respectively. Finally, the proposed method is validated by experiments using a two-axis vehicle and a steel–concrete composite beam. The results show that the proposed method can effectively identify the damage location. High-pass filtering of the raw data to remove trend items and wavelet noise reduction can significantly improve the accuracy of damage detection, and can accurately locate the damage in the presence of road-surface roughness. The damage detection result is not sensitive to vehicle parameter deviation, and the damage location can still be accurately identified when the vehicle weight or speed deviates 50% from the vehicle parameters in the reference data. In addition, the proposed method can make full use of the damage information between sensors, and can accurately identify the damage location with limited sensors. The number of sensors can be flexibly determined considering both accuracy and economy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
QLLX完成签到,获得积分10
刚刚
Akim应助wen采纳,获得10
8秒前
FashionBoy应助江河采纳,获得10
10秒前
火星上的菲鹰应助貔貅采纳,获得10
15秒前
nanonamo完成签到,获得积分10
16秒前
telepathy应助难过大神采纳,获得10
16秒前
晓雨完成签到 ,获得积分10
17秒前
骆凤灵完成签到 ,获得积分10
18秒前
20秒前
20秒前
舒心的万声完成签到,获得积分10
20秒前
cfd1993发布了新的文献求助10
21秒前
一株多肉完成签到,获得积分10
22秒前
24秒前
25秒前
25秒前
25秒前
江河发布了新的文献求助10
26秒前
Jepsen完成签到 ,获得积分10
26秒前
哈哈哈哈完成签到 ,获得积分10
26秒前
27秒前
29秒前
SzyAzns发布了新的文献求助10
30秒前
niuhuhu发布了新的文献求助10
31秒前
黯然完成签到 ,获得积分10
34秒前
明理芾发布了新的文献求助10
35秒前
热心的戎发布了新的文献求助80
35秒前
一株多肉发布了新的文献求助10
36秒前
阿治完成签到 ,获得积分0
36秒前
司忆完成签到 ,获得积分10
36秒前
jasonwee发布了新的文献求助10
37秒前
SzyAzns完成签到,获得积分10
38秒前
38秒前
CodeCraft应助niuhuhu采纳,获得10
40秒前
流星完成签到,获得积分10
42秒前
42秒前
meng完成签到,获得积分20
43秒前
貔貅完成签到,获得积分10
44秒前
47秒前
48秒前
高分求助中
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3417412
求助须知:如何正确求助?哪些是违规求助? 3019044
关于积分的说明 8886380
捐赠科研通 2706542
什么是DOI,文献DOI怎么找? 1484355
科研通“疑难数据库(出版商)”最低求助积分说明 685970
邀请新用户注册赠送积分活动 681135