Analysing educational scientific collaboration through multilayer networks: patterns, impact and network generation model

构造(python库) 计算机科学 声誉 元数据 领域(数学) 资源(消歧) 图层(电子) 数据科学 互操作性 科学领域 组分(热力学) 知识管理 万维网 社会学 社会科学 数学 工程类 纯数学 程序设计语言 化学 有机化学 物理 热力学 机械工程 计算机网络 工作(物理)
作者
Shenwen Chen,Yisen Wang,Ziquan Liu,Wenbo Du,Lei Zheng,Run-Ran Liu
出处
期刊:Journal of Complex Networks [Oxford University Press]
卷期号:11 (5) 被引量:1
标识
DOI:10.1093/comnet/cnad033
摘要

Abstract Scientific collaboration is an essential aspect of the educational field, offering significant reference value in resource sharing and policy making. With the increasing diversity and inter-disciplinary nature of educational research, understanding scientific collaboration within and between various subfields is crucial for its development. This article employs topic modelling to extract educational research topics from publication metadata obtained from 265 scientific journals spanning the period from 2000 to 2021. We construct a multilayer co-authorship network whose layers represent the scientific collaboration in different subfields. The topological properties of the layers are compared, highlighting the differences and common features of scientific collaboration between hot and cold topics, with the main difference being the existence of a significant largest connected component. Further, the cross-layer cooperation behaviour is investigated by studying the structural measures of the multilayer network and reveals authors’ inclination to collaborate with familiar individuals in familiar subfields. Moreover, the relationships between the authors’ features on the network topology and their H-index are investigated. The results emphasize the significance of establishing a clear research direction to enhance the academic reputation of authors, as well as the importance of cross-layer collaboration for expanding their research groups. Finally, based on the above results, we propose a multilayer network generation model of scientific collaboration and verify its validity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
li完成签到,获得积分10
2秒前
3秒前
帅气书白完成签到,获得积分10
6秒前
bkagyin应助li采纳,获得10
6秒前
周一一完成签到,获得积分20
6秒前
温婉的靖儿完成签到,获得积分10
6秒前
7秒前
jiangjiang发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
huangdinghuang完成签到,获得积分10
9秒前
慈ci发布了新的文献求助10
12秒前
gent完成签到,获得积分10
12秒前
丘比特应助小雒雒采纳,获得10
12秒前
一只滦完成签到,获得积分10
13秒前
Almo完成签到,获得积分10
13秒前
13秒前
着急的傲菡完成签到,获得积分10
13秒前
snail完成签到,获得积分10
17秒前
罐罐完成签到,获得积分10
17秒前
17秒前
nicolaslcq完成签到,获得积分0
18秒前
zxxx完成签到,获得积分10
19秒前
19秒前
19秒前
bleem完成签到,获得积分10
20秒前
铉莉发布了新的文献求助10
21秒前
邵洋发布了新的文献求助10
23秒前
自由的蒜苗完成签到,获得积分10
23秒前
24秒前
25秒前
26秒前
小雒雒完成签到,获得积分20
28秒前
英俊的铭应助风中的宛白采纳,获得10
28秒前
量子星尘发布了新的文献求助10
28秒前
29秒前
30秒前
lwl666完成签到,获得积分10
30秒前
小雒雒发布了新的文献求助10
30秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010774
求助须知:如何正确求助?哪些是违规求助? 3550436
关于积分的说明 11305765
捐赠科研通 3284800
什么是DOI,文献DOI怎么找? 1810853
邀请新用户注册赠送积分活动 886574
科研通“疑难数据库(出版商)”最低求助积分说明 811499