医学
青光眼
眼科
眼压
视盘
梯度升压
眼底(子宫)
眼底摄影
正常眼压性青光眼
人工智能
高眼压
验光服务
随机森林
视网膜
开角型青光眼
荧光血管造影
计算机科学
作者
Ahnul Ha,Sukkyu Sun,Young Kook Kim,Jin Wook Jeoung,Hee Chan Kim,Ki Ho Park
标识
DOI:10.1136/bjo-2022-323167
摘要
Background/aims To assess the performance of deep-learning (DL) models for prediction of conversion to normal-tension glaucoma (NTG) in normotensive glaucoma suspect (GS) patients. Methods Datasets of 12 458 GS eyes were reviewed. Two hundred and ten eyes (105 eyes showing NTG conversion and 105 without conversion), followed up for a minimum of 7 years during which intraocular pressure (IOP) was lower than 21 mm Hg, were included. The features of two fundus images (optic disc photography and red-free retinal nerve fibre layer (RNFL) photography) were extracted by convolutional auto encoder. The extracted features as well as 15 clinical features including age, sex, IOP, spherical equivalent, central corneal thickness, axial length, average circumpapillary RNFL thickness, systolic/diastolic blood pressure and body mass index were used to predict NTG conversion. Prediction was performed using three machine-learning classifiers (ie, XGBoost, Random Forest, Gradient Boosting) with different feature combinations. Results All three algorithms achieved high diagnostic accuracy for NTG conversion prediction. The AUCs ranged from 0.987 (95% CI 0.978 to 1.000; Random Forest trained with both fundus images and clinical features) and 0.994 (95% CI 0.984 to 1.000; XGBoost trained with both fundus images and clinical features). XGBoost showed the best prediction performance for time to NTG conversion (mean squared error, 2.24). The top three important clinical features for time-to-conversion prediction were baseline IOP, diastolic blood pressure and average circumpapillary RNFL thickness. Conclusion DL models, trained with both fundus images and clinical data, showed the potential to predict whether and when normotensive GS patients will show conversion to NTG.
科研通智能强力驱动
Strongly Powered by AbleSci AI