Visual Question Answering (VQA) is a fundamental task in computer vision and natural language process fields. The adversarial vulnerability of VQA models is crucial for their reliability in real-world applications. However, current VQA attacks are mainly focused on the white-box and transfer-based settings, which require the attacker to have full or partial prior knowledge of victim VQA models. Besides that, query-based VQA attacks require a massive amount of query times, which the victim model may detect. In this paper, we propose the Visuo-Adaptive DualStrike (VADS) attack, a novel adversarial attack method combining transfer-based and query-based strategies to exploit vulnerabilities in VQA systems. Unlike current VQA attacks focusing on either approach, VADS leverages a momentum-like ensemble method to search potential attack targets and compress the perturbation. After that, our method employs a query-based strategy to dynamically adjust the weight of perturbation per surrogate model. We evaluate the effectiveness of VADS across 8 VQA models and two datasets. The results demonstrate that VADS outperforms existing adversarial techniques in both efficiency and success rate. Our code is available at: https://github.com/stevenzhang9577/VADS.