亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Knowledge Graph-Based Behavior Denoising and Preference Learning for Sequential Recommendation

计算机科学 推荐系统 偏爱 协同过滤 滤波器(信号处理) 情报检索 选择(遗传算法) 噪音(视频) 人工智能 任务(项目管理) 机器学习 偏好学习 路径(计算) 信息过载 万维网 管理 程序设计语言 经济 图像(数学) 计算机视觉 微观经济学
作者
Hongzhi Liu,Yao Zhu,Zhonghai Wu
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:2
标识
DOI:10.1109/tkde.2023.3325666
摘要

Sequential recommendation seeks to predict users' next behaviors and recommend related items over time. Existing research has mainly focused on modeling users' dynamic preferences from their sequential behaviors. However, most of these studies have ignored the negative effects of noise behaviors in the given sequences, which may mislead the recommender. In addition, users' behavior data is always sparse, which makes it difficult to effectively learn users' preferences purely from their historical behaviors. Most recently, knowledge graphs (KGs) have been exploited by few researchers for sequential recommendation. However, they always assume all information in KGs or KG paths with limited length are useful for recommendation, which may bring irrelevant information from KGs into the recommender and further mislead the recommender. To address these issues, we propose a novel KG-based behavior denoising and preference learning model named KGDPL for sequential recommendation. We argue that the paths in KGs that reflect semantic relations between entities can not only help to remove noise behaviors and recommend successive items for users, but also provide relevant explanations. Therefore, we first devise a supervised knowledge path selection module to select effective paths between items from KGs for behavior prediction, which aims to filter out irrelevant information from KGs for the given recommendation task. Then, we design a knowledge-enhanced behavior denoising module to mitigate the negative effects of the noise behaviors contained in historical sequences by using the knowledge path information. After that, we propose a knowledge-enhanced preference learning module to better learn users' personalized and dynamic preferences from their historical behavior sequences and related knowledge information, which can also help tag users and provide explanations for recommendation results. Experimental results on four real-world datasets demonstrate the effectiveness and interpretability of the proposed model KGDPL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hilygogo完成签到,获得积分10
17秒前
露露完成签到,获得积分10
3分钟前
houha233发布了新的文献求助10
3分钟前
3分钟前
宁异勿同完成签到,获得积分10
3分钟前
3分钟前
科研通AI2S应助踏实的芸遥采纳,获得30
4分钟前
4分钟前
4分钟前
poki完成签到 ,获得积分10
5分钟前
zz发布了新的文献求助10
5分钟前
5分钟前
5分钟前
houha233完成签到,获得积分10
5分钟前
6分钟前
xuhanghang发布了新的文献求助10
6分钟前
空曲完成签到 ,获得积分10
9分钟前
9分钟前
大模型应助zz采纳,获得10
9分钟前
木森ab发布了新的文献求助10
9分钟前
JamesPei应助木森ab采纳,获得10
9分钟前
木森ab完成签到,获得积分20
9分钟前
朱朱完成签到,获得积分10
10分钟前
大个应助朱朱采纳,获得10
10分钟前
April完成签到 ,获得积分10
11分钟前
古炮完成签到 ,获得积分10
13分钟前
香蕉觅云应助Zephyr采纳,获得30
14分钟前
15分钟前
hhhhhhhhhh完成签到 ,获得积分10
16分钟前
小巧的柏柳完成签到 ,获得积分10
16分钟前
Setlla完成签到 ,获得积分10
16分钟前
Aries完成签到 ,获得积分10
16分钟前
研友_VZG7GZ应助lik采纳,获得10
16分钟前
Zephyr发布了新的文献求助30
16分钟前
17分钟前
17分钟前
小巫发布了新的文献求助10
17分钟前
17分钟前
zz发布了新的文献求助10
17分钟前
zz完成签到,获得积分10
17分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139600
求助须知:如何正确求助?哪些是违规求助? 2790479
关于积分的说明 7795340
捐赠科研通 2446926
什么是DOI,文献DOI怎么找? 1301511
科研通“疑难数据库(出版商)”最低求助积分说明 626259
版权声明 601176