Efficient 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography-based machine learning model for predicting epidermal growth factor receptor mutations in non-small cell lung cancer

医学 接收机工作特性 正电子发射断层摄影术 肺癌 机器学习 人工智能 支持向量机 逻辑回归 核医学 肿瘤科 内科学 算法 计算机科学
作者
Dan Ruan,Janyao Fang,Xinyu Teng
出处
期刊:Quarterly Journal of Nuclear Medicine and Molecular Imaging [Edizioni Minerva Medica]
被引量:3
标识
DOI:10.23736/s1824-4785.22.03441-0
摘要

Beyond the human eye's limitations, radiomics provides more information that can be used for diagnosis. We develop a personalized and efficient model based on 18F-Fluorodeoxyglucose (18F-FDG) Positron Emission Tomography/Computed Tomography (PET/CT) to predict epidermal growth factor receptor (EGFR) mutations to help identify which non-small cell cancer (NSCLC) patients are candidates for EGFR-tyrosine kinase inhibitors (TKIs) therapy.We retrospectively included 100 patients with NSCLC and randomized them according to 70 patients in the training group and 30 patients in the validation group. The least absolute shrinkage and selection operator logistic regression (LLR) algorithm and Support Vector Machine (SVM) classifier were used to build the models and predict whether EGFR is mutated or not. The predictive efficacy of the LLR algorithm-based model and the SVM classifier-based model was evaluated by plotting the receiver operating characteristic (ROC) curves and calculating the area under the curve (AUC).The AUC, sensitivity and specificity of our radiomics model by LLR algorithm were 0.792, 0.967, and 0.600 for the training group and 0.643, 1.00, and 0.378 for the validation group, respectively, in predicting EGFR mutations. The AUC was 0.838 for the training group and 0.696 for the validation group after combining radiomics features with clinical features. The prediction results based on the SVM classifier showed that the validation group had the best performance when based on radial kernel function with AUC, sensitivity, and specificity of 0.741, 0.667, and 0.825, respectively.Radiomics models based on 18F-FDG PET/CT modeled with different machine learning algorithms can improve the predictive efficacy of the models. Models that combine clinical features are more clinically valuable.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大脸小唐完成签到,获得积分20
刚刚
1秒前
1秒前
海狗发布了新的文献求助30
2秒前
zhoutong发布了新的文献求助10
2秒前
躺平研究生完成签到,获得积分10
3秒前
畅快的柔发布了新的文献求助10
3秒前
chixueqi完成签到,获得积分10
4秒前
4秒前
6秒前
6秒前
7秒前
7秒前
7秒前
8秒前
8秒前
jianhaohuang发布了新的文献求助200
9秒前
9秒前
深深发布了新的文献求助10
10秒前
英俊的铭应助wu采纳,获得10
10秒前
zzzkyt发布了新的文献求助10
10秒前
Jasper应助清脆靳采纳,获得10
11秒前
小n发布了新的文献求助10
11秒前
hanyang965发布了新的文献求助10
13秒前
14秒前
15秒前
Graham发布了新的文献求助10
16秒前
从容前行完成签到,获得积分10
16秒前
阿巴阿巴发布了新的文献求助10
18秒前
私心無名完成签到,获得积分10
18秒前
19秒前
小鲨鱼完成签到,获得积分10
19秒前
秀丽的砖家完成签到,获得积分10
20秒前
Akim应助深深采纳,获得10
21秒前
森气发布了新的文献求助10
21秒前
传奇3应助hanyang965采纳,获得10
22秒前
22秒前
我是老大应助Augusterny采纳,获得30
23秒前
24秒前
26秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310354
求助须知:如何正确求助?哪些是违规求助? 2943290
关于积分的说明 8513642
捐赠科研通 2618527
什么是DOI,文献DOI怎么找? 1431125
科研通“疑难数据库(出版商)”最低求助积分说明 664383
邀请新用户注册赠送积分活动 649580