Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory infections in 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016

医学 疾病负担 重症监护医学 人口学 疾病 环境卫生 内科学 社会学
作者
Christopher Troeger,Brigette F. Blacker,Fakher Rahim,Puja C Rao,Shujin Cao,Stephanie R M Zimsen,Samuel B Albertson,Aniruddha Deshpande,Aniruddha Deshpande,Tamer H. Farag,Mohammad H. Forouzanfar,Abebe Zegeye,Ifedayo Adetifa,Tara Ballav Adhikari,Miloud Taki Eddine Aichour,Faris Lami,Ayman Al‐Eyadhy,Nelson Alvis‐Guzmán,Azmeraw T. Amare,Yaw Ampem Amoako
出处
期刊:Lancet Infectious Diseases [Elsevier]
卷期号:18 (11): 1191-1210 被引量:1912
标识
DOI:10.1016/s1473-3099(18)30310-4
摘要

BackgroundLower respiratory infections are a leading cause of morbidity and mortality around the world. The Global Burden of Diseases, Injuries, and Risk Factors (GBD) Study 2016, provides an up-to-date analysis of the burden of lower respiratory infections in 195 countries. This study assesses cases, deaths, and aetiologies spanning the past 26 years and shows how the burden of lower respiratory infection has changed in people of all ages.MethodsWe used three separate modelling strategies for lower respiratory infections in GBD 2016: a Bayesian hierarchical ensemble modelling platform (Cause of Death Ensemble model), which uses vital registration, verbal autopsy data, and surveillance system data to predict mortality due to lower respiratory infections; a compartmental meta-regression tool (DisMod-MR), which uses scientific literature, population representative surveys, and health-care data to predict incidence, prevalence, and mortality; and modelling of counterfactual estimates of the population attributable fraction of lower respiratory infection episodes due to Streptococcus pneumoniae, Haemophilus influenzae type b, influenza, and respiratory syncytial virus. We calculated each modelled estimate for each age, sex, year, and location. We modelled the exposure level in a population for a given risk factor using DisMod-MR and a spatio-temporal Gaussian process regression, and assessed the effectiveness of targeted interventions for each risk factor in children younger than 5 years. We also did a decomposition analysis of the change in LRI deaths from 2000–16 using the risk factors associated with LRI in GBD 2016.FindingsIn 2016, lower respiratory infections caused 652 572 deaths (95% uncertainty interval [UI] 586 475–720 612) in children younger than 5 years (under-5s), 1 080 958 deaths (943 749–1 170 638) in adults older than 70 years, and 2 377 697 deaths (2 145 584–2 512 809) in people of all ages, worldwide. Streptococcus pneumoniae was the leading cause of lower respiratory infection morbidity and mortality globally, contributing to more deaths than all other aetiologies combined in 2016 (1 189 937 deaths, 95% UI 690 445–1 770 660). Childhood wasting remains the leading risk factor for lower respiratory infection mortality among children younger than 5 years, responsible for 61·4% of lower respiratory infection deaths in 2016 (95% UI 45·7–69·6). Interventions to improve wasting, household air pollution, ambient particulate matter pollution, and expanded antibiotic use could avert one under-5 death due to lower respiratory infection for every 4000 children treated in the countries with the highest lower respiratory infection burden.InterpretationOur findings show substantial progress in the reduction of lower respiratory infection burden, but this progress has not been equal across locations, has been driven by decreases in several primary risk factors, and might require more effort among elderly adults. By highlighting regions and populations with the highest burden, and the risk factors that could have the greatest effect, funders, policy makers, and programme implementers can more effectively reduce lower respiratory infections among the world's most susceptible populations.FundingBill & Melinda Gates Foundation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
单身的溪流完成签到,获得积分10
刚刚
潇潇完成签到 ,获得积分10
刚刚
量子星尘发布了新的文献求助10
2秒前
大力的诗蕾完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
Aeeeeeeon完成签到 ,获得积分10
8秒前
PQ完成签到,获得积分10
10秒前
12秒前
keyanxinshou完成签到 ,获得积分10
12秒前
von完成签到,获得积分10
12秒前
王平安完成签到 ,获得积分10
14秒前
沫柠完成签到 ,获得积分10
14秒前
甜蜜冷风完成签到,获得积分10
15秒前
怀南完成签到 ,获得积分10
15秒前
计划逃跑完成签到 ,获得积分10
17秒前
朴素海亦完成签到 ,获得积分10
20秒前
jixuchance完成签到,获得积分10
21秒前
小白鞋完成签到 ,获得积分10
25秒前
量子星尘发布了新的文献求助10
26秒前
俊逸的康乃馨完成签到 ,获得积分10
27秒前
量子星尘发布了新的文献求助10
27秒前
看文献完成签到,获得积分10
28秒前
科研韭菜完成签到 ,获得积分10
28秒前
jscr完成签到,获得积分10
29秒前
29秒前
机智的青柏完成签到 ,获得积分10
29秒前
嬛嬛完成签到,获得积分10
30秒前
嗯哼完成签到 ,获得积分10
31秒前
杨一完成签到 ,获得积分10
31秒前
眼科女医生小魏完成签到 ,获得积分10
36秒前
Lan完成签到,获得积分10
39秒前
豆包糊了完成签到,获得积分10
39秒前
百里幻翠完成签到,获得积分10
42秒前
xiu完成签到 ,获得积分10
42秒前
cherry完成签到 ,获得积分10
43秒前
洗衣液谢完成签到 ,获得积分10
45秒前
free2030完成签到,获得积分10
47秒前
任性翠安完成签到 ,获得积分10
48秒前
黑粉头头完成签到,获得积分10
49秒前
50秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664764
求助须知:如何正确求助?哪些是违规求助? 4869628
关于积分的说明 15108640
捐赠科研通 4823481
什么是DOI,文献DOI怎么找? 2582379
邀请新用户注册赠送积分活动 1536429
关于科研通互助平台的介绍 1494858