Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory infections in 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016

医学 疾病负担 重症监护医学 人口学 疾病 环境卫生 内科学 社会学
作者
Christopher Troeger,Brigette F. Blacker,Fakher Rahim,Puja C Rao,Shujin Cao,Stephanie R M Zimsen,Samuel B Albertson,Aniruddha Deshpande,Aniruddha Deshpande,Tamer H. Farag,Mohammad H. Forouzanfar,Abebe Zegeye,Ifedayo Adetifa,Tara Ballav Adhikari,Miloud Taki Eddine Aichour,Faris Lami,Ayman Al‐Eyadhy,Nelson Alvis‐Guzmán,Azmeraw T. Amare,Yaw Ampem Amoako
出处
期刊:Lancet Infectious Diseases [Elsevier]
卷期号:18 (11): 1191-1210 被引量:1912
标识
DOI:10.1016/s1473-3099(18)30310-4
摘要

BackgroundLower respiratory infections are a leading cause of morbidity and mortality around the world. The Global Burden of Diseases, Injuries, and Risk Factors (GBD) Study 2016, provides an up-to-date analysis of the burden of lower respiratory infections in 195 countries. This study assesses cases, deaths, and aetiologies spanning the past 26 years and shows how the burden of lower respiratory infection has changed in people of all ages.MethodsWe used three separate modelling strategies for lower respiratory infections in GBD 2016: a Bayesian hierarchical ensemble modelling platform (Cause of Death Ensemble model), which uses vital registration, verbal autopsy data, and surveillance system data to predict mortality due to lower respiratory infections; a compartmental meta-regression tool (DisMod-MR), which uses scientific literature, population representative surveys, and health-care data to predict incidence, prevalence, and mortality; and modelling of counterfactual estimates of the population attributable fraction of lower respiratory infection episodes due to Streptococcus pneumoniae, Haemophilus influenzae type b, influenza, and respiratory syncytial virus. We calculated each modelled estimate for each age, sex, year, and location. We modelled the exposure level in a population for a given risk factor using DisMod-MR and a spatio-temporal Gaussian process regression, and assessed the effectiveness of targeted interventions for each risk factor in children younger than 5 years. We also did a decomposition analysis of the change in LRI deaths from 2000–16 using the risk factors associated with LRI in GBD 2016.FindingsIn 2016, lower respiratory infections caused 652 572 deaths (95% uncertainty interval [UI] 586 475–720 612) in children younger than 5 years (under-5s), 1 080 958 deaths (943 749–1 170 638) in adults older than 70 years, and 2 377 697 deaths (2 145 584–2 512 809) in people of all ages, worldwide. Streptococcus pneumoniae was the leading cause of lower respiratory infection morbidity and mortality globally, contributing to more deaths than all other aetiologies combined in 2016 (1 189 937 deaths, 95% UI 690 445–1 770 660). Childhood wasting remains the leading risk factor for lower respiratory infection mortality among children younger than 5 years, responsible for 61·4% of lower respiratory infection deaths in 2016 (95% UI 45·7–69·6). Interventions to improve wasting, household air pollution, ambient particulate matter pollution, and expanded antibiotic use could avert one under-5 death due to lower respiratory infection for every 4000 children treated in the countries with the highest lower respiratory infection burden.InterpretationOur findings show substantial progress in the reduction of lower respiratory infection burden, but this progress has not been equal across locations, has been driven by decreases in several primary risk factors, and might require more effort among elderly adults. By highlighting regions and populations with the highest burden, and the risk factors that could have the greatest effect, funders, policy makers, and programme implementers can more effectively reduce lower respiratory infections among the world's most susceptible populations.FundingBill & Melinda Gates Foundation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
科目三应助mu采纳,获得10
2秒前
爱听歌小蚂蚁关注了科研通微信公众号
2秒前
一种信仰完成签到 ,获得积分10
2秒前
2秒前
顾矜应助淡淡的觅松采纳,获得10
3秒前
6秒前
mount完成签到,获得积分10
8秒前
斯文败类应助long采纳,获得10
9秒前
10秒前
Orange应助作业对不起采纳,获得10
11秒前
11秒前
14秒前
mu发布了新的文献求助10
15秒前
风清扬应助科研通管家采纳,获得30
16秒前
蒹葭苍苍应助科研通管家采纳,获得10
17秒前
风清扬应助科研通管家采纳,获得30
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
蒹葭苍苍应助科研通管家采纳,获得10
17秒前
星辰大海应助科研通管家采纳,获得10
17秒前
风清扬应助科研通管家采纳,获得30
17秒前
星辰大海应助科研通管家采纳,获得10
17秒前
风清扬应助科研通管家采纳,获得30
17秒前
小郭子应助科研通管家采纳,获得10
17秒前
小郭子应助科研通管家采纳,获得10
17秒前
Lucas应助科研通管家采纳,获得10
17秒前
Lucas应助科研通管家采纳,获得10
17秒前
17秒前
桐桐应助科研通管家采纳,获得10
17秒前
17秒前
桐桐应助科研通管家采纳,获得10
17秒前
小郭子应助科研通管家采纳,获得10
17秒前
17秒前
小郭子应助科研通管家采纳,获得10
17秒前
Ava应助科研通管家采纳,获得10
17秒前
Ava应助科研通管家采纳,获得10
17秒前
17秒前
小蘑菇应助科研通管家采纳,获得10
17秒前
17秒前
小蘑菇应助科研通管家采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742086
求助须知:如何正确求助?哪些是违规求助? 5405647
关于积分的说明 15343886
捐赠科研通 4883555
什么是DOI,文献DOI怎么找? 2625085
邀请新用户注册赠送积分活动 1573951
关于科研通互助平台的介绍 1530896