Dismantling, optimising, and personalising internet cognitive behavioural therapy for depression: a systematic review and component network meta-analysis using individual participant data

荟萃分析 组分(热力学) 萧条(经济学) 互联网 医学 梅德林 系统回顾 认知 临床心理学 计算机科学 心理学 应用心理学 精神科 数据科学 万维网 生物 病理 经济 宏观经济学 生物化学 物理 热力学
作者
Toshi A. Furukawa,Aya M Suganuma,Edoardo G. Ostinelli,Gerhard Andersson,Christopher G. Beevers,Jason Shumake,Thomas Berger,Florien Boele,Claudia Buntrock,Per Carlbring,Isabella Choi,Helen Christensen,Andrew Mackinnon,Jennifer Dahne,Marcus J. H. Huibers,David Daniel Ebert,Louise M. Farrer,Nicholas R. Forand,Daniel R. Strunk,Iony D. Ezawa
出处
期刊:The Lancet Psychiatry [Elsevier]
卷期号:8 (6): 500-511 被引量:192
标识
DOI:10.1016/s2215-0366(21)00077-8
摘要

Background Internet cognitive behavioural therapy (iCBT) is a viable delivery format of CBT for depression. However, iCBT programmes include training in a wide array of cognitive and behavioural skills via different delivery methods, and it remains unclear which of these components are more efficacious and for whom. Methods We did a systematic review and individual participant data component network meta-analysis (cNMA) of iCBT trials for depression. We searched PubMed, PsycINFO, Embase, and the Cochrane Library for randomised controlled trials (RCTs) published from database inception to Jan 1, 2019, that compared any form of iCBT against another or a control condition in the acute treatment of adults (aged ≥18 years) with depression. Studies with inpatients or patients with bipolar depression were excluded. We sought individual participant data from the original authors. When these data were unavailable, we used aggregate data. Two independent researchers identified the included components. The primary outcome was depression severity, expressed as incremental mean difference (iMD) in the Patient Health Questionnaire-9 (PHQ-9) scores when a component is added to a treatment. We developed a web app that estimates relative efficacies between any two combinations of components, given baseline patient characteristics. This study is registered in PROSPERO, CRD42018104683. Findings We identified 76 RCTs, including 48 trials contributing individual participant data (11 704 participants) and 28 trials with aggregate data (6474 participants). The participants' weighted mean age was 42·0 years and 12 406 (71%) of 17 521 reported were women. There was suggestive evidence that behavioural activation might be beneficial (iMD −1·83 [95% credible interval (CrI) −2·90 to −0·80]) and that relaxation might be harmful (1·20 [95% CrI 0·17 to 2·27]). Baseline severity emerged as the strongest prognostic factor for endpoint depression. Combining human and automated encouragement reduced dropouts from treatment (incremental odds ratio, 0·32 [95% CrI 0·13 to 0·93]). The risk of bias was low for the randomisation process, missing outcome data, or selection of reported results in most of the included studies, uncertain for deviation from intended interventions, and high for measurement of outcomes. There was moderate to high heterogeneity among the studies and their components. Interpretation The individual patient data cNMA revealed potentially helpful, less helpful, or harmful components and delivery formats for iCBT packages. iCBT packages aiming to be effective and efficient might choose to include beneficial components and exclude ones that are potentially detrimental. Our web app can facilitate shared decision making by therapist and patient in choosing their preferred iCBT package. Funding Japan Society for the Promotion of Science.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助KYT采纳,获得10
刚刚
permanent完成签到,获得积分10
刚刚
刚刚
1秒前
2秒前
乔达摩悉达多完成签到 ,获得积分10
3秒前
4秒前
大模型应助酷炫翠柏采纳,获得30
4秒前
共享精神应助耍酷的伟祺采纳,获得10
5秒前
bu拿下PHD绝不回头完成签到,获得积分10
5秒前
bkagyin应助皇帝的床帘采纳,获得40
5秒前
扶瑶可接发布了新的文献求助10
5秒前
qq大魔王完成签到,获得积分10
6秒前
yuanqing发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
沙琪玛完成签到,获得积分20
7秒前
7秒前
Lucas应助拂晓采纳,获得10
7秒前
斯文败类应助QYPANG采纳,获得10
8秒前
liekkas发布了新的文献求助10
8秒前
9秒前
9秒前
zz桓桓完成签到,获得积分20
9秒前
edjtzlz关注了科研通微信公众号
10秒前
嘟嘟卡皮巴拉完成签到 ,获得积分10
10秒前
11秒前
lyy关注了科研通微信公众号
11秒前
田柾国发布了新的文献求助10
14秒前
FashionBoy应助科研通管家采纳,获得10
14秒前
Owen应助科研通管家采纳,获得10
14秒前
风中的青完成签到,获得积分10
14秒前
orixero应助科研通管家采纳,获得10
14秒前
Akim应助科研通管家采纳,获得10
14秒前
无花果应助科研通管家采纳,获得10
14秒前
顾矜应助科研通管家采纳,获得10
14秒前
量子星尘发布了新的文献求助10
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
panda完成签到,获得积分10
15秒前
英姑应助科研通管家采纳,获得10
15秒前
sswbzh应助科研通管家采纳,获得50
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5713133
求助须知:如何正确求助?哪些是违规求助? 5213704
关于积分的说明 15269646
捐赠科研通 4864955
什么是DOI,文献DOI怎么找? 2611759
邀请新用户注册赠送积分活动 1562014
关于科研通互助平台的介绍 1519213