Dismantling, optimising, and personalising internet cognitive behavioural therapy for depression: a systematic review and component network meta-analysis using individual participant data

荟萃分析 组分(热力学) 萧条(经济学) 互联网 医学 梅德林 系统回顾 认知 临床心理学 计算机科学 心理学 应用心理学 精神科 数据科学 万维网 生物 病理 经济 宏观经济学 生物化学 物理 热力学
作者
Toshi A. Furukawa,Aya M Suganuma,Edoardo G. Ostinelli,Gerhard Andersson,Christopher G. Beevers,Jason Shumake,Thomas Berger,Florien Boele,Claudia Buntrock,Per Carlbring,Isabella Choi,Helen Christensen,Andrew Mackinnon,Jennifer Dahne,Marcus J. H. Huibers,David Daniel Ebert,Louise M. Farrer,Nicholas R. Forand,Daniel R. Strunk,Iony D. Ezawa
出处
期刊:The Lancet Psychiatry [Elsevier]
卷期号:8 (6): 500-511 被引量:192
标识
DOI:10.1016/s2215-0366(21)00077-8
摘要

Background Internet cognitive behavioural therapy (iCBT) is a viable delivery format of CBT for depression. However, iCBT programmes include training in a wide array of cognitive and behavioural skills via different delivery methods, and it remains unclear which of these components are more efficacious and for whom. Methods We did a systematic review and individual participant data component network meta-analysis (cNMA) of iCBT trials for depression. We searched PubMed, PsycINFO, Embase, and the Cochrane Library for randomised controlled trials (RCTs) published from database inception to Jan 1, 2019, that compared any form of iCBT against another or a control condition in the acute treatment of adults (aged ≥18 years) with depression. Studies with inpatients or patients with bipolar depression were excluded. We sought individual participant data from the original authors. When these data were unavailable, we used aggregate data. Two independent researchers identified the included components. The primary outcome was depression severity, expressed as incremental mean difference (iMD) in the Patient Health Questionnaire-9 (PHQ-9) scores when a component is added to a treatment. We developed a web app that estimates relative efficacies between any two combinations of components, given baseline patient characteristics. This study is registered in PROSPERO, CRD42018104683. Findings We identified 76 RCTs, including 48 trials contributing individual participant data (11 704 participants) and 28 trials with aggregate data (6474 participants). The participants' weighted mean age was 42·0 years and 12 406 (71%) of 17 521 reported were women. There was suggestive evidence that behavioural activation might be beneficial (iMD −1·83 [95% credible interval (CrI) −2·90 to −0·80]) and that relaxation might be harmful (1·20 [95% CrI 0·17 to 2·27]). Baseline severity emerged as the strongest prognostic factor for endpoint depression. Combining human and automated encouragement reduced dropouts from treatment (incremental odds ratio, 0·32 [95% CrI 0·13 to 0·93]). The risk of bias was low for the randomisation process, missing outcome data, or selection of reported results in most of the included studies, uncertain for deviation from intended interventions, and high for measurement of outcomes. There was moderate to high heterogeneity among the studies and their components. Interpretation The individual patient data cNMA revealed potentially helpful, less helpful, or harmful components and delivery formats for iCBT packages. iCBT packages aiming to be effective and efficient might choose to include beneficial components and exclude ones that are potentially detrimental. Our web app can facilitate shared decision making by therapist and patient in choosing their preferred iCBT package. Funding Japan Society for the Promotion of Science.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
andrele发布了新的文献求助10
2秒前
咖啡续命发布了新的文献求助10
2秒前
3秒前
英俊的铭应助咩咩采纳,获得10
4秒前
浪客剑心发布了新的文献求助10
4秒前
kk发布了新的文献求助10
5秒前
丘比特应助小言采纳,获得10
5秒前
栀染发布了新的文献求助20
5秒前
个性小海豚完成签到,获得积分10
6秒前
6秒前
ding应助淡淡夕阳采纳,获得10
7秒前
SciGPT应助Hope采纳,获得10
7秒前
8秒前
wuwu发布了新的文献求助10
9秒前
义气千风完成签到,获得积分10
10秒前
jieni发布了新的文献求助10
11秒前
12秒前
传奇3应助能干砖家采纳,获得10
12秒前
星辰完成签到,获得积分10
13秒前
Lida完成签到,获得积分10
14秒前
占博涛发布了新的文献求助10
14秒前
情怀应助miqilin采纳,获得10
14秒前
量子星尘发布了新的文献求助10
14秒前
Owen应助齐齐采纳,获得10
15秒前
无极微光应助DJDJDDDJ采纳,获得20
16秒前
ccc6195发布了新的文献求助20
17秒前
所所应助皮代谷采纳,获得10
17秒前
17秒前
慕慕完成签到 ,获得积分10
18秒前
xiyang发布了新的文献求助10
19秒前
狂野笑卉完成签到,获得积分10
20秒前
JamesPei应助阿九采纳,获得10
20秒前
21秒前
量子星尘发布了新的文献求助10
22秒前
冷酷夏真完成签到 ,获得积分10
22秒前
SHY完成签到,获得积分10
22秒前
主流二发布了新的文献求助10
23秒前
BowieHuang应助同瓜不同命采纳,获得10
25秒前
十九集完成签到 ,获得积分10
26秒前
denny发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771462
求助须知:如何正确求助?哪些是违规求助? 5591687
关于积分的说明 15427521
捐赠科研通 4904775
什么是DOI,文献DOI怎么找? 2638990
邀请新用户注册赠送积分活动 1586782
关于科研通互助平台的介绍 1541792