Comparison of 11 automated PET segmentation methods in lymphoma.

图像分割 核医学 模式识别(心理学) 正电子发射断层摄影术 地图集(解剖学) 淋巴瘤
作者
Amy J Weisman,Minnie Kieler,Scott B. Perlman,Martin Hutchings,Robert Jeraj,L. Kostakoglu,Tyler Bradshaw
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:65 (23): 235019- 被引量:6
标识
DOI:10.1088/1361-6560/abb6bd
摘要

BackgroundSegmentation of lymphoma lesions in FDG PET/CT images is critical in both assessing individual lesions and quantifying patient disease burden. Simple thresholding methods remain common despite the large heterogeneity in lymphoma lesion location, size, and contrast. Here, we assess 11 automated PET segmentation methods for their use in two scenarios: individual lesion segmentation and patient-level disease quantification in lymphoma.MethodsLesions on18F-FDG PET/CT scans of 90 lymphoma patients were contoured by a nuclear medicine physician. Thresholding, active contours, clustering, adaptive region-growing, and convolutional neural network (CNN) methods were implemented on all physician-identified lesions. Lesion-level segmentation was evaluated using multiple segmentation performance metrics (Dice, Hausdorff Distance). Patient-level quantification of total disease burden (SUVtotal) and metabolic tumor volume (MTV) was assessed using Spearman's correlation coefficients between the segmentation output and physician contours. Lesion segmentation and patient quantification performance was compared to inter-physician agreement in a subset of 20 patients segmented by a second nuclear medicine physician.ResultsIn total, 1,223 lesions with median tumor-to-background ratio of 4.0 and volume of 1.8 cm3, were evaluated. When assessed for lesion segmentation, a 3D CNN, DeepMedic, achieved the highest performance across all evaluation metrics. DeepMedic, clustering methods, and an iterative threshold method had lesion-level segmentation performance comparable to the degree of inter-physician agreement. For patient-level SUVtotaland MTV quantification, all methods except 40% and 50% SUVmaxand adaptive region-growing achieved a performance that was similar the agreement of the two physicians.ConclusionsMultiple methods, including a 3D CNN, clustering, and an iterative threshold method, achieved both good lesion-level segmentation and patient-level quantification performance in a population of 90 lymphoma patients. These methods are thus recommended over thresholding methods such as 40% and 50% SUVmax, which were consistently found to be significantly outside the limits defined by inter-physician agreement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
haha完成签到,获得积分10
1秒前
湛刘佳发布了新的文献求助10
3秒前
老实的山兰完成签到,获得积分10
3秒前
LinHan发布了新的文献求助10
3秒前
魔幻的觅珍完成签到,获得积分20
4秒前
阔达的无心完成签到,获得积分10
4秒前
Leon应助zhao采纳,获得10
5秒前
清风皓月完成签到,获得积分20
7秒前
7秒前
zhou国兵完成签到,获得积分10
7秒前
宇少爱学习哟完成签到,获得积分10
7秒前
9秒前
10秒前
JamesPei应助jitanxiang采纳,获得10
10秒前
打打应助刘一三采纳,获得10
11秒前
小飞七应助ZHH采纳,获得30
11秒前
在水一方应助ZHH采纳,获得10
11秒前
Bb发布了新的文献求助200
12秒前
13秒前
13秒前
13秒前
PQ完成签到,获得积分10
14秒前
温柔以冬发布了新的文献求助10
15秒前
15秒前
Jasper应助奉天BB机采纳,获得10
15秒前
15秒前
bkagyin应助古药采纳,获得10
17秒前
HughWang完成签到,获得积分10
17秒前
赘婿应助demoliu采纳,获得10
17秒前
18秒前
18秒前
cen发布了新的文献求助10
19秒前
butter0903发布了新的文献求助10
19秒前
19秒前
JX完成签到,获得积分10
20秒前
21秒前
21秒前
22秒前
LING发布了新的文献求助10
23秒前
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
A mandible of Pliosaurus brachyspondylus (Reptilia, Sauropterygia) from the Kimmeridgian of the Boulonnais (France) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3680927
求助须知:如何正确求助?哪些是违规求助? 3233140
关于积分的说明 9806401
捐赠科研通 2944475
什么是DOI,文献DOI怎么找? 1614665
邀请新用户注册赠送积分活动 762292
科研通“疑难数据库(出版商)”最低求助积分说明 737328