Sherloc: a knowledge-driven algorithm for geolocating microblog messages at sub-city level

微博 社会化媒体 计算机科学 数据科学 地理 万维网
作者
Laura Rocco,Federico Dassereto,Michela Bertolotto,Davide Buscaldi,Barbara Catania,Giovanna Guerrini
出处
期刊:International Journal of Geographical Information Science [Taylor & Francis]
卷期号:35 (1): 84-115 被引量:6
标识
DOI:10.1080/13658816.2020.1764003
摘要

Many solutions for coarse geolocating of users at the time they post a message exist. However, for many important applications, like traffic monitoring and event detection, finer geolocation at the level of city neighborhoods, i.e., at a sub-city level, is needed. Data-driven approaches often do not guarantee good accuracy and efficiency due to the higher number of sub-city level positions to be estimated and the low availability of balanced and large training sets. We claim that external information sources overcome limitations of data-driven approaches in achieving good accuracy for sub-city level geolocation and we present a knowledge-driven approach achieving good results once the reference area of a message is known. Our algorithm, called Sherloc, exploits toponyms in the message, extracts their semantic from a geographic gazetteer, and embeds them into a metric space that captures the semantic distance among them. We identify the semantically closest toponyms to a message and then cluster them with respect to their spatial locations. Sherloc requires no prior training, it can infer the location at sub-city level with high accuracy, and it is not limited to geolocating on a fixed spatial grid.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
勾勾1991完成签到,获得积分10
3秒前
3秒前
科研通AI2S应助大气亦巧采纳,获得10
3秒前
4秒前
汉堡包应助wade采纳,获得10
4秒前
张学习完成签到,获得积分10
5秒前
蔡军完成签到 ,获得积分10
5秒前
白桃战士完成签到,获得积分10
5秒前
zzz完成签到,获得积分10
5秒前
6秒前
端庄的冬天完成签到,获得积分10
6秒前
小栩完成签到 ,获得积分10
7秒前
啦啦啦啦啦啦啦啦完成签到 ,获得积分10
7秒前
曲沛萍发布了新的文献求助10
7秒前
宁阿霜发布了新的文献求助20
8秒前
SOO应助研友_5476B5采纳,获得10
8秒前
夏风完成签到 ,获得积分10
9秒前
隐形曼青应助萧小五采纳,获得10
9秒前
Jiawei完成签到,获得积分10
9秒前
nieanicole发布了新的文献求助10
9秒前
小橙同学完成签到 ,获得积分10
9秒前
Ava应助yukinade采纳,获得10
10秒前
爆米花应助hahhh7采纳,获得10
10秒前
10秒前
深情安青应助leodu采纳,获得10
11秒前
11秒前
12秒前
开心完成签到,获得积分10
13秒前
Never stall完成签到,获得积分10
13秒前
13秒前
13秒前
甜美的雁开完成签到,获得积分20
14秒前
猫归四海关注了科研通微信公众号
14秒前
CipherSage应助vinecho采纳,获得30
14秒前
14秒前
大气亦巧完成签到,获得积分10
15秒前
ding应助2025tangtang采纳,获得10
15秒前
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987267
求助须知:如何正确求助?哪些是违规求助? 3529546
关于积分的说明 11245872
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804089
邀请新用户注册赠送积分活动 881339
科研通“疑难数据库(出版商)”最低求助积分说明 808653