A Hybrid Algorithm Combining Population Pharmacokinetic and Machine Learning for Isavuconazole Exposure Prediction

均方误差 人口 药代动力学 医学 算法 贝叶斯概率 非金属 统计 数学 内科学 环境卫生
作者
Alexandre Destère,Pierre Marquet,Marc Labriffe,Milou‐Daniel Drici,Jean‐Baptiste Woillard
出处
期刊:Pharmaceutical Research [Springer Nature]
卷期号:40 (4): 951-959 被引量:9
标识
DOI:10.1007/s11095-023-03507-y
摘要

Maximum a posteriori Bayesian estimation (MAP-BE) based on a limited sampling strategy and a population pharmacokinetic (POPPK) model is used to estimate individual pharmacokinetic parameters. Recently, we proposed a methodology that combined population pharmacokinetic and machine learning (ML) to decrease the bias and imprecision in individual iohexol clearance prediction. The aim of this study was to confirm the previous results by developing a hybrid algorithm combining POPPK, MAP-BE and ML that accurately predicts isavuconazole clearance. A total of 1727 isavuconazole rich PK profiles were simulated using a POPPK model from the literature, and MAP-BE was used to estimate the clearance based on: (i) the full PK profiles (refCL); and (ii) C24h only (C24h-CL). Xgboost was trained to correct the error between refCL and C24h-CL in the training dataset (75%). C24h-CL as well as ML-corrected C24h-CL were evaluated in a testing dataset (25%) and then in a set of PK profiles simulated using another published POPPK model. A strong decrease in mean predictive error (MPE%), imprecision (RMSE%) and the number of profiles outside ± 20% MPE% (n-out20%) was observed with the hybrid algorithm (decreased in MPE% by 95.8% and 85.6%; RMSE% by 69.5% and 69.0%; n-out20% by 97.4% and 100% in the training and testing sets, respectively. In the external validation set, the hybrid algorithm decreased MPE% by 96%, RMSE% by 68% and n-out20% by 100%. The hybrid model proposed significantly improved isavuconazole AUC estimation over MAP-BE based on the sole C24h and may improve dose adjustment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
starryxm发布了新的文献求助10
刚刚
tian完成签到,获得积分10
1秒前
1秒前
zzx完成签到 ,获得积分10
1秒前
2秒前
深情安青应助DDTT采纳,获得10
2秒前
taozidetao完成签到 ,获得积分10
2秒前
共享精神应助犹豫帆布鞋采纳,获得10
2秒前
小欧文完成签到,获得积分10
2秒前
nasya完成签到,获得积分10
3秒前
neo发布了新的文献求助10
3秒前
3秒前
3秒前
今天也要开心Y完成签到,获得积分10
3秒前
喜悦芝麻完成签到 ,获得积分10
3秒前
沉默是金12完成签到 ,获得积分10
4秒前
情怀应助寒冷书竹采纳,获得10
4秒前
科研完成签到,获得积分10
5秒前
LLC完成签到 ,获得积分10
5秒前
5秒前
思岩完成签到 ,获得积分10
5秒前
6秒前
小袁完成签到,获得积分10
6秒前
6秒前
中级中级完成签到,获得积分20
6秒前
6秒前
starryxm完成签到,获得积分10
6秒前
Akim应助胡天萌采纳,获得10
6秒前
徐慕源发布了新的文献求助10
6秒前
nikai完成签到,获得积分10
6秒前
杜嘟嘟发布了新的文献求助10
6秒前
科研通AI5应助岁月轮回采纳,获得10
6秒前
xiu完成签到,获得积分10
7秒前
JWang完成签到,获得积分20
7秒前
8秒前
小橙子发布了新的文献求助30
8秒前
9秒前
科研通AI5应助zino采纳,获得10
9秒前
shepherd完成签到 ,获得积分10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678