Cross-Border Technology Integration in the Field of Artificial Intelligence Based on Neural Network Algorithm

领域(数学) 人工神经网络 人工智能 匹配(统计) 计算机科学 机器学习 数学 统计 纯数学
作者
Qiu Yu,Zheqing Tang,Yang Luo
标识
DOI:10.1007/978-3-031-36014-5_7
摘要

In recent years, with the continuous development of my country's social science and technology level, people's research and exploration in the field of cross-border technology AI has become more and more in-depth, and the society's demand for cross-border technology integration and application in the field of artificial intelligence has also increased. Gradually increasing, only by investing more research and analysis, can there be greater breakthroughs and development in the application of cross-border technology AI. Based on the neural network algorithm, this paper takes the key point of the field of artificial intelligence as the starting point, and explores the application of cross-border technology AI from a new perspective. This paper briefly introduces the current cross-border technology AI and its development trend, studies the existing cross-border technology integration applications in the field of artificial intelligence, and conducts a series of experiments to prove the artificial intelligence based on neural network algorithm. Cross-border technology integration in the field of intelligence has specific advantages. The final results of the research show that the fusion coefficient of experiment 5 is 93, and the matching degree of cross-border technology fusion in the field of artificial intelligence is 98.7%. Through the comparison of experimental data, it is found that the matching degree of cross-border technology AI has always maintained a stable level, that is, it has remained around 99%. It shows that the matching degree of cross-border technology fusion in the field of artificial intelligence does not change with the change of the fusion coefficient.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小只完成签到,获得积分10
刚刚
大鱼发布了新的文献求助10
刚刚
scanker1981完成签到,获得积分10
刚刚
可乐发布了新的文献求助10
1秒前
正直凌文完成签到 ,获得积分10
1秒前
2秒前
达da完成签到,获得积分10
2秒前
2秒前
2秒前
丘比特应助Crazy_Runner采纳,获得10
3秒前
天天快乐应助小西采纳,获得10
3秒前
3秒前
Bennyz完成签到,获得积分10
3秒前
橘子完成签到,获得积分10
4秒前
HANG发布了新的文献求助10
4秒前
5秒前
L3完成签到,获得积分10
5秒前
瑾瑾瑾完成签到,获得积分10
5秒前
小雅完成签到 ,获得积分10
5秒前
jiang伟发布了新的文献求助10
5秒前
5秒前
kiminonawa发布了新的文献求助10
5秒前
外向钢铁侠完成签到,获得积分10
5秒前
小p发布了新的文献求助10
6秒前
慕青应助苏州小北采纳,获得10
6秒前
高兴的豆芽完成签到 ,获得积分10
6秒前
布知道完成签到 ,获得积分10
7秒前
Raye发布了新的文献求助10
7秒前
米奇完成签到,获得积分10
8秒前
小安发布了新的文献求助10
8秒前
KyrIrv发布了新的文献求助10
8秒前
9秒前
加速度完成签到 ,获得积分20
9秒前
9秒前
牧水之完成签到,获得积分10
10秒前
一片叶子完成签到,获得积分10
10秒前
10秒前
Markming发布了新的文献求助10
10秒前
10秒前
若语发布了新的文献求助10
10秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167605
求助须知:如何正确求助?哪些是违规求助? 2819067
关于积分的说明 7924710
捐赠科研通 2478949
什么是DOI,文献DOI怎么找? 1320553
科研通“疑难数据库(出版商)”最低求助积分说明 632821
版权声明 602443