已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

YOLO-BYTE: An efficient multi-object tracking algorithm for automatic monitoring of dairy cows

计算机科学 跟踪(教育) 视频跟踪 人工智能 目标检测 精确性和召回率 模式识别(心理学) 计算机视觉 字节 对象(语法) 算法 心理学 教育学 操作系统
作者
Zhiyang Zheng,Jingwen Li,Lifeng Qin
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:209: 107857-107857 被引量:28
标识
DOI:10.1016/j.compag.2023.107857
摘要

Dairy cows tracking is an essential means to obtain their behavioral information, real-time position, activity data, and health status. A multi-object tracking method (YOLO-BYTE) is proposed to address the problem of missed detection and false detection caused by complex environments in cow individual detection and tracking. The method improves upon the YOLO v7 Backbone network feature extraction module by adding a Self-Attention and Convolution mixed module (ACmix) to account for the uneven spatial distribution and target scale variation of the cows. Additionally, in order to reduce the number of model parameters, an improved lightweight Spatial Pyramid Pooling Cross Stage Partial Connections (SPPCSPC-L) module is adopted to reduce model complexity. At the same time, the state parameters in the Kalman filter are improved by directly predicting the width and height information of the tracking boxes, so as to improve the ByteTrack algorithm to make tracking boxes matching the cows more precisely and accurately. Experimental conducted on the dairy cow object detection and multi-object tracking dataset show that the proposed YOLO-BYTE model achieves a Precision (P) of 97.3% in the dairy cow target detection dataset, with an improved Recall (R) and Average Precision (AP) by 1.1% compared to the original algorithm, and an 18% reduction in model parameters. Moreover, the proposed method demonstrated significant improvements in High Order Tracking Accuracy (HOTA), Multi-Object Tracking Accuracy (MOTA), and Identification F1 (IDF1) by 4.4%, 6.1%, and 3.8%, respectively, compared to the original model, with a decrease of 37.5% in Identity Switch (IDS). The tracker runs in a real-time manner with an average analysis speed of 47 fps. Hence, it is demonstrated that the proposed approach is capable of effective multi-object tracking of dairy cows in natural scenes and provides technical support for non-contact dairy cow automatic monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
Huanghong完成签到,获得积分10
2秒前
DD完成签到 ,获得积分10
5秒前
寻道图强应助江城一霸采纳,获得30
5秒前
7秒前
科研66666完成签到 ,获得积分10
8秒前
爆米花应助赵振辉采纳,获得10
9秒前
Talha发布了新的文献求助10
10秒前
12秒前
12秒前
晨昏完成签到,获得积分10
13秒前
Seven完成签到,获得积分20
14秒前
华仔应助Carmen采纳,获得20
15秒前
16秒前
17秒前
啊呜发布了新的文献求助10
17秒前
17秒前
赵振辉完成签到,获得积分20
19秒前
无语的稀发布了新的文献求助10
21秒前
赵振辉发布了新的文献求助10
22秒前
北斗HH完成签到,获得积分0
23秒前
23秒前
kk完成签到,获得积分10
25秒前
冷酷丹翠完成签到 ,获得积分10
27秒前
amber发布了新的文献求助10
30秒前
cover12发布了新的文献求助10
33秒前
一只想做科研的狗完成签到,获得积分10
34秒前
成熟稳重痴情完成签到,获得积分10
35秒前
FashionBoy应助fengyuke采纳,获得10
37秒前
39秒前
孤巷的猫完成签到,获得积分10
40秒前
山山而川完成签到 ,获得积分10
41秒前
LJL完成签到 ,获得积分10
42秒前
Rory完成签到 ,获得积分10
45秒前
LAN完成签到,获得积分10
46秒前
王力完成签到 ,获得积分10
47秒前
47秒前
斯文败类应助小刘采纳,获得10
49秒前
蒋怀寒发布了新的文献求助10
50秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3256743
求助须知:如何正确求助?哪些是违规求助? 2898909
关于积分的说明 8302988
捐赠科研通 2568075
什么是DOI,文献DOI怎么找? 1394872
科研通“疑难数据库(出版商)”最低求助积分说明 652924
邀请新用户注册赠送积分活动 630631