Explainable depression symptom detection in social media

萧条(经济学) 社会化媒体 心理学 精神科 计算机科学 万维网 经济 宏观经济学
作者
Eliseo Bao,Anxo Pérez,Javier Parapar
出处
期刊:Health information science and systems [Springer Nature]
卷期号:12 (1)
标识
DOI:10.1007/s13755-024-00303-9
摘要

Users of social platforms often perceive these sites as supportive spaces to post about their mental health issues. Those conversations contain important traces about individuals' health risks. Recently, researchers have exploited this online information to construct mental health detection models, which aim to identify users at risk on platforms like Twitter, Reddit or Facebook. Most of these models are focused on achieving good classification results, ignoring the explainability and interpretability of the decisions. Recent research has pointed out the importance of using clinical markers, such as the use of symptoms, to improve trust in the computational models by health professionals. In this paper, we introduce transformer-based architectures designed to detect and explain the appearance of depressive symptom markers in user-generated content from social media. We present two approaches: (i) train a model to classify, and another one to explain the classifier's decision separately and (ii) unify the two tasks simultaneously within a single model. Additionally, for this latter manner, we also investigated the performance of recent conversational Large Language Models (LLMs) utilizing both in-context learning and finetuning. Our models provide natural language explanations, aligning with validated symptoms, thus enabling clinicians to interpret the decisions more effectively. We evaluate our approaches using recent symptom-focused datasets, using both offline metrics and expert-in-the-loop evaluations to assess the quality of our models' explanations. Our findings demonstrate that it is possible to achieve good classification results while generating interpretable symptom-based explanations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助jaaycc采纳,获得10
刚刚
刚刚
刚刚
刚刚
poyo完成签到,获得积分10
1秒前
1秒前
Jasper应助sober采纳,获得10
2秒前
qy发布了新的文献求助10
2秒前
water treat完成签到,获得积分10
2秒前
失似完成签到,获得积分10
2秒前
星辰大海应助呆萌不正采纳,获得10
2秒前
活力映梦完成签到,获得积分20
3秒前
天天快乐应助紧张的曼文采纳,获得10
3秒前
打打应助郭小胖14采纳,获得10
3秒前
yuan发布了新的文献求助20
4秒前
gentlewasp发布了新的文献求助10
5秒前
音悦台发布了新的文献求助10
6秒前
土鼬完成签到,获得积分20
6秒前
LLLLLL发布了新的文献求助10
6秒前
ziwantcm发布了新的文献求助10
6秒前
8秒前
优美从菡发布了新的文献求助10
8秒前
8秒前
科研通AI5应助随心采纳,获得10
8秒前
8秒前
8秒前
jt完成签到,获得积分10
9秒前
9秒前
zheng发布了新的文献求助10
10秒前
科研通AI5应助论文发表采纳,获得10
10秒前
wxy完成签到,获得积分10
10秒前
shao发布了新的文献求助10
11秒前
碧蓝的钢铁侠完成签到,获得积分20
11秒前
眯眯眼的绝音完成签到,获得积分10
11秒前
sll应助飞快的鱼采纳,获得10
12秒前
12秒前
13秒前
隐形曼青应助成就寒珊采纳,获得30
13秒前
13秒前
1518发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Handbook on Inequality and Social Capital 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3547087
求助须知:如何正确求助?哪些是违规求助? 3124191
关于积分的说明 9358008
捐赠科研通 2822719
什么是DOI,文献DOI怎么找? 1551643
邀请新用户注册赠送积分活动 723580
科研通“疑难数据库(出版商)”最低求助积分说明 713825